Equivariant Quantum Cohomology of the Odd Symplectic Grassmannian
Files
TR Number
Date
2017-04-04
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract
The odd symplectic Grassmannian IG := IG(k, 2n + 1) parametrizes k dimensional subspaces of C^2n+1 which are isotropic with respect to a general (necessarily degenerate) symplectic form. The odd symplectic group acts on IG with two orbits, and IG is itself a smooth Schubert variety in the submaximal isotropic Grassmannian IG(k, 2n + 2). We use the technique of curve neighborhoods to prove a Chevalley formula in the equivariant quantum cohomology of IG, i.e. a formula to multiply a Schubert class by the Schubert divisor class. This generalizes a formula of Pech in the case k = 2, and it gives an algorithm to calculate any quantum multiplication in the equivariant quantum cohomology ring.
Description
Keywords
odd symplectic, quantum cohomology, Chevalley formula