Searching for superconductivity in high entropy oxide Ruddlesden-Popper cuprate films

dc.contributor.authorMazza, Alessandro R.en
dc.contributor.authorGao, Xingyaoen
dc.contributor.authorRossi, Daniel J.en
dc.contributor.authorMusico, Brianna L.en
dc.contributor.authorValentine, Tyler W.en
dc.contributor.authorKennedy, Zacharyen
dc.contributor.authorZhang, Jieen
dc.contributor.authorLapano, Jasonen
dc.contributor.authorKeppens, Veerleen
dc.contributor.authorMoore, Robert G.en
dc.contributor.authorBrahlek, Matthewen
dc.contributor.authorRost, Christina M.en
dc.contributor.authorWard, Thomas Z.en
dc.date.accessioned2024-01-17T20:50:48Zen
dc.date.available2024-01-17T20:50:48Zen
dc.date.issued2021-11-29en
dc.description.abstractIn this work, the high entropy oxide A2CuO4 Ruddlesden-Popper (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)2CuO4 is explored by charge doping with Ce+4 and Sr+2 at concentrations known to induce superconductivity in the simple parent compounds, Nd2CuO4 and La2CuO4. Electron doped (La0.185Pr0.185Nd0.185Sm0.185Eu0.185Ce0.075)2CuO4 and hole doped (La0.18Pr0.18Nd0.18Sm0.18Eu0.18Sr0.1)2CuO4 are synthesized and shown to be single crystal, epitaxially strained, and highly uniform. Transport measurements demonstrate that all as-grown films are insulating regardless of doping. Annealing studies show that resistivity can be tuned by modifying oxygen stoichiometry and inducing metallicity but without superconductivity. These results, in turn, are connected to extended x-ray absorption fine structure results, indicating that the lack of superconductivity in the high entropy cuprates likely originates from a large distortion within the Cu-O plane (σ2 > 0.015 Å2) due to A-site cation size variance, which drives localization of charge carriers. These findings describe new opportunities for controlling charge- and orbital-mediated functional responses in Ruddlesden-Popper crystal structures, driven by balancing of cation size and charge variances that may be exploited for functionally important behaviors such as superconductivity, antiferromagnetism, and metal-insulator transitions while opening less understood phase spaces hosting doped Mott insulators, strange metals, quantum criticality, pseudogaps, and ordered charge density waves.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1116/6.0001441en
dc.identifier.eissn1520-8559en
dc.identifier.issn0734-2101en
dc.identifier.issue1en
dc.identifier.orcidRost, Christina [0000-0002-6153-6066]en
dc.identifier.urihttps://hdl.handle.net/10919/117390en
dc.identifier.volume40en
dc.language.isoenen
dc.publisherAmerican Vacuum Societyen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectSuperconductivityen
dc.titleSearching for superconductivity in high entropy oxide Ruddlesden-Popper cuprate filmsen
dc.title.serialJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Filmsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Materials Science and Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mazza_JVSTA_2021.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: