Human-AI Collaborative Innovation in Design
dc.contributor.author | Song, Binyang | en |
dc.contributor.author | Zhu, Qihao | en |
dc.contributor.author | Luo, Jianxi | en |
dc.date.accessioned | 2024-02-22T18:48:14Z | en |
dc.date.available | 2024-02-22T18:48:14Z | en |
dc.date.issued | 2024 | en |
dc.description.abstract | Human-AI collaboration (HAIC) is a promising strategy to transform engineering design and innovation, yet how to design artificial intelligence (AI) to boost HAIC remains unclear. Accordingly, this paper provides a new, unified, and comprehensive scheme for classifying AI roles. On this basis, we develop an AI design framework that outlines expected AI capabilities, interactive attributes, and trust enablers across various HAIC scenarios, offering guidance for integrating AI into human teams effectively. We also discuss current advancements, challenges, and prospects for future research. | en |
dc.description.notes | Yes, full paper (Peer reviewed?) | en |
dc.description.version | Accepted version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | https://hdl.handle.net/10919/118113 | en |
dc.language.iso | en | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Human-AI Collaborative Innovation in Design | en |
dc.title.serial | International Design Conference | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
pubs.finish-date | 2024-05-23 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.start-date | 2024-05-20 | en |