Boundary layer transport of small particles

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Polytechnic Institute and State University


The transport of small particles across the aerodynamic boundary layer that developed over a smooth, flat, acrylic plate and their subsequent deposition was investigated. The velocity boundary layer over the flat plate was characterized for a wind tunnel mainstream velocity of 2 m/s. Particle deposition was quantified with respect to location on the experimental plate with a microscope.

The deposition of 0.8, 0.9, 1.1, and 2.0 micron diameter unit density, polystyrene latex microspheres on to oil-coated, uncoated, upper, and lower surfaces was investigated. Although experimental deposition velocities exhibited run-to-run variation, they were significantly greater than those reported in the literature.

A turbulent flow deposition model which included eddy diffusion, Brownian diffusion, inertial, and gravitational deposition mechanisms underestimated the experimental deposition velocities. The experimental plate was nonconductive and could not be electrically grounded. It appears the electrostatic attraction mechanism was responsible for the increased experimental deposition velocities; this mechanism was not included in the deposition model.

There was no significant resuspension of 42 micron diameter microspheres deposited to an initially moist experimental plate after 6 hours in the wind tunnel at a mean air velocity of 2 m/s.