Electronic and quantum phase coherence properties of bismuth thin films

dc.contributorVirginia Techen
dc.contributor.authorRudolph, M.en
dc.contributor.authorHeremans, Jean J.en
dc.contributor.departmentPhysicsen
dc.date.accessed2014-01-10en
dc.date.accessioned2014-01-21T19:28:06Zen
dc.date.available2014-01-21T19:28:06Zen
dc.date.issued2012-06en
dc.description.abstractWe present a method to deposit bulk-like Bi films by thermal evaporation and study the electrical, quantum coherence, and physical properties. A two stage growth procedure was found to optimize the film properties, with an initial wetting layer deposited at lower temperature followed by an active layer at higher temperature. Transport measurements indicate carrier properties comparable to molecular beam epitaxial films and display weak-antilocalization, from which the quantum phase coherence lengths are deduced. A 76 nm film is found to optimally exhibit both bulk-like Bi characteristics and the 2-dimensional quantum coherence properties desired for Bi-based quantum devices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729035]en
dc.description.sponsorshipDepartment of Energy DOE DE-FG02-08ER46532en
dc.identifier.citationRudolph, M.; Heremans, J. J., "Electronic and quantum phase coherence properties of bismuth thin films," Appl. Phys. Lett. 100, 241601 (2012); http://dx.doi.org/10.1063/1.4729035en
dc.identifier.doihttps://doi.org/10.1063/1.4729035en
dc.identifier.issn0003-6951en
dc.identifier.urihttp://hdl.handle.net/10919/24940en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/apl/100/24/10.1063/1.4729035en
dc.language.isoen_USen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.holderAmerican Institute of Physicsen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysicsen
dc.titleElectronic and quantum phase coherence properties of bismuth thin filmsen
dc.title.serialApplied Physics Lettersen
dc.typeArticle - Refereeden
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.4729035.pdf
Size:
563.81 KB
Format:
Adobe Portable Document Format
Description:
Main article