A posteriori error estimates for DDDAS inference problems

dc.contributor.authorRao, V.en
dc.contributor.authorSandu, Adrianen
dc.contributor.departmentComputer Scienceen
dc.contributor.editorAbramson, D.en
dc.contributor.editorLees, M.en
dc.contributor.editorKrzhizhanovskaya, V. V.en
dc.contributor.editorDongarra, J.en
dc.contributor.editorSloot, P. M. A.en
dc.coverage.spatialCairns, AUSTRALIAen
dc.date.accessioned2017-03-06T18:43:02Zen
dc.date.available2017-03-06T18:43:02Zen
dc.date.issued2014-01-01en
dc.description.abstractInverse problems use physical measurements along with a computational model to estimate the parameters or state of a system of interest. Errors in measurements and uncertainties in the computational model led to inaccurate estimates. This work develops a methodology to estimate the impact of different errors on the variational solutions of inverse problems. The focus is on time evolving systems described by ordinary differential equations, and on a particular class of inverse problems, namely, data assimilation. The computational algorithm uses first-order and second-order adjoint models. In a deterministic setting the methodology provides a posteriori error estimates for the inverse solution. In a probabilistic setting it provides an a posteriori quantification of uncertainty in the inverse solution, given the uncertainties in the model and data. Numerical experiments with the shallow water equations in spherical coordinates illustrate the use of the proposed error estimation machinery in both deterministic and probabilistic settings.en
dc.description.versionPublished versionen
dc.format.extent1256 - 1265 (10) page(s)en
dc.identifier.doihttps://doi.org/10.1016/j.procs.2014.05.113en
dc.identifier.issn1877-0509en
dc.identifier.urihttp://hdl.handle.net/10919/75285en
dc.identifier.volume29en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000341492700113&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectComputer Science, Theory & Methodsen
dc.subjectComputer Scienceen
dc.subjectInverse problemsen
dc.subjectsensitivity analysisen
dc.subjectDDDASen
dc.subjectdata assimilationen
dc.subjecta posteriori erroren
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONSen
dc.subjectVARIATIONAL DATA ASSIMILATIONen
dc.subjectADJOINT SENSITIVITY-ANALYSISen
dc.subjectMESH REFINEMENTen
dc.titleA posteriori error estimates for DDDAS inference problemsen
dc.title.serial2014 International Conference On Computational Scienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherProceedings Paperen
dc.type.otherMeetingen
dc.type.otherBooks in seriesen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1409.7129v2.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: