Noncoercive Perturbed Densely Defined Operators and Application to Parabolic Problems
dc.contributor.author | Asfaw, Teffera M. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2017-03-07T20:48:42Z | en |
dc.date.available | 2017-03-07T20:48:42Z | en |
dc.date.issued | 2015-08-09 | en |
dc.description.abstract | Let ๐ be a real locally uniformly convex reflexive separable Banach space with locally uniformly convex dual space ๐โ. Let ๐: ๐ โ ๐ท(๐) โ 2๐โ be maximal monotone and ๐ : ๐ โ ๐ท(๐) โ ๐โ quasibounded generalized pseudomonotone such that there exists a real reflexive separable Banach space ๐ โ ๐ท(๐), dense and continuously embedded in ๐. Assume, further, that there exists ๐ โฅ 0 such that โจ๐ทโ + ๐๐ฅ, ๐ฅโฉ โฅ โdโ๐ฅโยฒ for all ๐ฅ โ ๐ท(๐) โฉ๐ท(๐) and ๐ทโ โ ๐๐ฅ. New surjectivity results are given for noncoercive, not everywhere defined, and possibly unbounded operators of the type ๐+๐. A partial positive answer for Nirenbergโs problem on surjectivity of expansive mapping is provided. Leray-Schauder degree is applied employing the method of elliptic superregularization. A new characterization of linear maximal monotone operator ๐ฟ : ๐ โ ๐ท(๐ฟ) โ ๐ โ is given as a result of surjectivity of ๐ฟ + ๐, where ๐ is of type (๐) with respect to ๐ฟ.These results improve the corresponding theory for noncoercive and not everywhere defined operators of pseudomonotone type. In the last section, an example is provided addressing existence of weak solution in ๐ = ๐ฟ๐(0, ๐;๐โยน,๐ (ฮฉ)) of a nonlinear parabolic problem of the type ๐ข๐กโ ฮฃ๐๐=1(๐/๐๐ฅ๐)๐๐ (๐ฅ, ๐ก, ๐ข, โ๐ข) = ๐(๐ฅ, ๐ก), (๐ฅ, ๐ก) โ ๐; ๐ข(๐ฅ, ๐ก) = 0, (๐ฅ, ๐ก) โ ๐ฮฉ ร (0, ๐); ๐ข(๐ฅ, 0) = 0, ๐ฅ โ ฮฉ, where ๐ > 1, ฮฉ is a nonempty, bounded, and open subset of R๐, ๐๐: ฮฉ ร (0,๐) ร โ ร โ๐ โ โ (๐ = 1, 2, . . . , ๐) satisfies certain growth conditions, and ๐ โ ๐ฟ๐' (๐), ๐ = ฮฉ ร (0,๐), and ๐' is the conjugate exponent of ๐. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Teffera M. Asfaw, "Noncoercive Perturbed Densely Defined Operators and Application to Parabolic Problems", Abstract and Applied Analysis, vol. 2015, Article ID 357934, 11 pages, 2015. https://doi.org/10.1155/2015/357934 | en |
dc.identifier.doi | https://doi.org/10.1155/2015/357934 | en |
dc.identifier.uri | http://hdl.handle.net/10919/75304 | en |
dc.identifier.volume | 2015 | en |
dc.language.iso | en | en |
dc.publisher | Hindawi | en |
dc.relation.uri | https://doi.org/10.1155/2017/2739102 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Noncoercive Perturbed Densely Defined Operators and Application to Parabolic Problems | en |
dc.title.serial | Abstract and Applied Analysis | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.5 KB
- Format:
- Item-specific license agreed upon to submission
- Description: