Sarnak's Conjecture for nilsequences on arbitrary number fields and applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We formulate the generalized Sarnak's Möbius disjointness conjecture for an arbitrary number field K, and prove a quantitative disjointness result between polynomial nilsequences (Φ(g(n)Γ))n∈ZD and aperiodic multiplicative functions on OK, the ring of integers of K. Here D=[K:Q], X=G/Γ is a nilmanifold, g:ZD→G is a polynomial sequence, and Φ:X→C is a Lipschitz function. This result, being a generalization of a previous theorem of the author in [44], requires a significantly different approach, which involves with multi-dimensional higher order Fourier analysis, multi-linear analysis, orbit properties on nilmanifold, and an orthogonality criterion of Kátai in OK. We also use variations of this result to derive applications in number theory and combinatorics: (1) we prove a structure theorem for multiplicative functions on K, saying that every bounded multiplicative function can be decomposed into the sum of an almost periodic function (the structural part) and a function with small Gowers uniformity norm of any degree (the uniform part); (2) we give a necessary and sufficient condition for the Gowers norms of a bounded multiplicative function in OK to be zero; (3) we provide partition regularity results over K for a large class of homogeneous equations in three variables. For example, for a,b∈Z﹨{0}, we show that for every partition of OK into finitely many cells, where K=Q(a,b,a+b), there exist distinct and non-zero x,y belonging to the same cell and z∈OK such that ax2+by2=z2.