Vlasov theory of plasma oscillations: linear-approximation
dc.contributor | Virginia Tech | en |
dc.contributor.author | Arthur, Michael D. | en |
dc.contributor.author | Greenberg, William | en |
dc.contributor.author | Zweifel, Paul F. | en |
dc.contributor.department | Mathematics | en |
dc.contributor.department | Physics | en |
dc.date.accessed | 2014-04-04 | en |
dc.date.accessioned | 2014-04-24T18:34:21Z | en |
dc.date.available | 2014-04-24T18:34:21Z | en |
dc.date.issued | 1977 | en |
dc.description.abstract | A functional analytic approach to the linearized collisionless Vlasov equation is presented utilizing a resolvent integration technique on the resolvent of the transport operator evaluated at a particular point. Formulae for the eigenfunction expansion are found for cases in which the plasma disperion function _ has first and second order zeroes. Special care is taken in the study of real zeroes of _ culminating in new results for this case. For a simple zero of _ with nonvanishing imaginary part the van Kampen-Case discrete modes are reproduced. The results are used to obtain the solution to the initial value problem. | en |
dc.identifier.citation | Arthur, M. D.; Greenberg, W.; Zweifel, P. F., "Vlasov theory of plasma oscillations: linear-approximation," Phys. Fluids 20, 1296 (1977); http://dx.doi.org/10.1063/1.862000 | en |
dc.identifier.doi | https://doi.org/10.1063/1.862000 | en |
dc.identifier.issn | 1070-6631 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47672 | en |
dc.identifier.url | http://scitation.aip.org/content/aip/journal/pof1/20/8/10.1063/1.862000 | en |
dc.language.iso | en_US | en |
dc.publisher | AIP Publishing | en |
dc.rights | In Copyright | en |
dc.rights.holder | AIP Publishing | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Vlasov theory of plasma oscillations: linear-approximation | en |
dc.title.serial | Physics of Fluids | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1.862000.pdf
- Size:
- 660.88 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article