Quantile Importance Sampling

dc.contributor.authorDatta, Jyotishkaen
dc.contributor.authorPolson, Nicholas G.en
dc.date.accessioned2026-01-06T14:09:04Zen
dc.date.available2026-01-06T14:09:04Zen
dc.date.issued2023-06-06en
dc.description.abstractIn Bayesian inference, the approximation of integrals of the form ψ = EF l(X) = χ l(x)dF(x) is a fundamental challenge. Such integrals are crucial for evidence estimation, which is important for various purposes, including model selection and numerical analysis. The existing strategies for evidence estimation are classified into four categories: deterministic approximation, density estimation, importance sampling, and vertical representation (Llorente et al., 2023). In this paper, we show that the Riemann sum estimator due to Yakowitz, Krimmel and Szidarovszky (1978) can be used in the context of nested sampling (Skilling, 2006) to achieve a O(n−4) rate of convergence, faster than the usual Ergodic Central Limit Theorem, under certain regularity conditions. We provide a brief overview of the literature on the Riemann sum estimators and the nested sampling algorithm and its connections to vertical likelihood Monte Carlo. We provide theoretical and numerical arguments to show how merging these two ideas may result in improved and more robust estimators for evidence estimation, especially in higher dimensional spaces. We also briefly discuss the idea of simulating the Lorenz curve that avoids the problem of intractable Λ functions, essential for the vertical representation and nested sampling.en
dc.description.notesYes, abstract only (Peer reviewed?)en
dc.description.versionAccepted versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1214/25-bjps638en
dc.identifier.issn0103-0752en
dc.identifier.issue3en
dc.identifier.orcidDatta, Jyotishka [0000-0001-5991-5182]en
dc.identifier.urihttps://hdl.handle.net/10919/140601en
dc.identifier.volume39en
dc.language.isoenen
dc.publisherInstitute of Mathematical Statisticsen
dc.relation.urihttps://doi.org/10.1214/25-bjps638en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleQuantile Importance Samplingen
dc.title.serialBrazilian Journal of Probability and Statisticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.finish-date2023-06-06en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Statisticsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/Statistics/Center for Biostatistics & Health Data Science (CBHDS)en
pubs.start-date2023-06-04en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantile_Importance_Sampling_Datta_Polson.pdf
Size:
552.45 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: