VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Accelerating Structural Design and Optimization using Machine Learning

TR Number

Date

2020-01-13

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Machine learning techniques promise to greatly accelerate structural design and optimization. In this thesis, deep learning and active learning techniques are applied to different non-convex structural optimization problems. Finite Element Analysis (FEA) based standard optimization methods for aircraft panels with bio-inspired curvilinear stiffeners are computationally expensive. The main reason for employing many of these standard optimization methods is the ease of their integration with FEA. However, each optimization requires multiple computationally expensive FEA evaluations, making their use impractical at times. To accelerate optimization, the use of Deep Neural Networks (DNNs) is proposed to approximate the FEA buckling response. The results show that DNNs obtained an accuracy of 95% for evaluating the buckling load. The DNN accelerated the optimization by a factor of nearly 200. The presented work demonstrates the potential of DNN-based machine learning algorithms for accelerating the optimization of bio-inspired curvilinearly stiffened panels. But, the approach could have disadvantages for being only specific to similar structural design problems, and requiring large datasets for DNNs training. An adaptive machine learning technique called active learning is used in this thesis to accelerate the evolutionary optimization of complex structures. The active learner helps the Genetic Algorithms (GA) by predicting if the possible design is going to satisfy the required constraints or not. The approach does not need a trained surrogate model prior to the optimization. The active learner adaptively improve its own accuracy during the optimization for saving the required number of FEA evaluations. The results show that the approach has the potential to reduce the total required FEA evaluations by more than 50%. Lastly, the machine learning is used to make recommendations for modeling choices while analyzing a structure using FEA. The decisions about the selection of appropriate modeling techniques are usually based on an analyst's judgement based upon their knowledge and intuition from past experience. The machine learning-based approach provides recommendations within seconds, thus, saving significant computational resources for making accurate design choices.

Description

Keywords

Structural Design and Optimization, Finite Element Methods, Parallel Processing, Machine learning, Deep learning (Machine learning), Active Learning

Citation