Clean water for all: The demographics of urban and rural safe drinking water challenges in Virginia, USA and San Rafael Las Flores, Guatemala

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The United Nations established Sustainable Development Goal 6, universal access to safely managed drinking water and sanitation service, as a global goal for 2030. In rural areas, access lags significantly and progress is rarely examined concurrently between developed and developing nations. Therefore, this dissertation focuses on rural water system challenges in a developed nation, the US, and a developing nation, Guatemala.

In the US, approximately 250 million Americans receive drinking water from community water systems (CWSs), theoretically safeguarded by the Safe Drinking Water Act (SDWA). There is mounting evidence that racial, ethnic, and socioeconomic disparities persist in US drinking water access and quality, but studies are limited by the exclusion of very small CWSs and a large geographic unit of analysis. A novel geospatial methodology was created to delineate system service areas at the zip code scale in Virginia and assess the influence of demographic characteristics on compliance with the SDWA from 2006 to 2016. Results reveal that monitoring and reporting violations are concentrated in private, rural systems that serve fewer than 500 people, while health-based violations were more likely in non-white communities, specifically those with higher proportions of Black, Native Hawaiian, and other Pacific Islanders.

This study was completed in parallel with a household sampling campaign in rural San Rafael Las Flores, Guatemala. In Guatemala, no public access to water system compliance or quality information currently exists. With growing investment in mining industries and recognized naturally occurring arsenic in volcanic geology, citizens are eager for drinking water information. Survey results highlighted dissatisfaction with and distrust in most tap water sources. Consequently, residents regularly buy bottled water or collect water from untreated natural springs. Water quality results indicated that tap water from the central drinking water treatment plant contained higher levels of arsenic and other contaminants, when compared to most other sources.

Though the settings are quite different, parallel investigation of rural drinking water system challenges in the US and Guatemala reveal common challenges and lessons. Moving forward, all nations would benefit from standard monitoring of drinking water access, quality, and compliance that allowed for intersectional investigations of environmental health inequities.



Drinking water, community water system, compliance, service area delineation, community demographics, Guatemala, arsenic, point-of-use, consumer perceptions and use