Discretization Error Estimation Using the Error Transport Equations for Computational Fluid Dynamics Simulations
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Computational Fluid Dynamics (CFD) has been widely used as a tool to analyze physical phenomena involving fluids. To perform a CFD simulation, the governing equations are discretized to formulate a set of nonlinear algebraic equations. Typical spatial discretization schemes include finite-difference methods, finite-volume methods, and finite-element methods. Error introduced in the discretization process is called discretization error and defined as the difference between the exact solution to the discrete equations and the exact solution to the partial differential or integral equations. For most CFD simulations, discretization error accounts for the largest portion of the numerical error in the simulation. Discretization error has a complicated nonlinear relationship with the computational grid and the discretization scheme, which makes it especially difficult to estimate. Thus, it is important to study the discretization error to characterize numerical errors in a CFD simulation.
Discretization error estimation is performed using the Error Transport Equations (ETE) in this work. The original nonlinear form of the ETE can be linearized to formulate the linearized ETE. Results of the two types of the ETE are compared. This work implements the ETE for finite-volume methods and Discontinuous Galerkin (DG) finite-element methods. For finite volume methods, discretization error estimates are obtained for both steady state problems and unsteady problems. The work on steady-state problems focuses on turbulent flow modelled by the Spalart-Allmaras (SA) model and Menter's