VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Effects of fish caudal fin sweep angle and kinematics on thrust production during low-speed thunniform swimming

dc.contributor.authorMatta, Alexanderen
dc.contributor.authorBayandor, Javiden
dc.contributor.authorBattaglia, Francineen
dc.contributor.authorPendar, Hodjaten
dc.contributor.departmentBiomedical Engineering and Mechanicsen
dc.date.accessioned2019-12-19T17:37:46Zen
dc.date.available2019-12-19T17:37:46Zen
dc.date.issued2019-06-12en
dc.description.abstractScombrid fish lunate caudal fins are characterized by a wide range of sweep angles. Scombrid that have small sweep-angle caudal fins move at higher swimming speeds, suggesting that smaller angles produce more thrust. Furthermore, scombrids occasionally use high angles of attack (AoA) suggesting this also has some thrust benefit. This work examined the hypothesis that a smaller sweep angle and higher AoA improved thrust in swimmers by experimentally analyzing a robophysical model. The robophysical model was tested in a water tunnel at speeds between 0.35 and 0.7 body lengths per second. Three swept caudal fins were analyzed at three different AoA, three different freestream velocities, and four different Strouhal numbers, for a total of 108 cases. Results demonstrated that the fin with the largest sweep angle of 50° resulted in lower thrust production than the 40° and 30° fins, especially at higher Strouhal numbers. Larger AoA up to 25° increased thrust production at the higher Strouhal numbers, but at lower Strouhal numbers, produced less thrust. Differences in thrust production due to fin sweep angle and AoAwere attributed to the variation in spanwise flowand leading edge vortex dynamics.en
dc.description.sponsorshipThis research originated as a course project funded by the Department of Biomedical Engineering and Mechanics. We also thank Virginia Tech’s Open Access Subvention Fund (OASF) for financial support of the publishing fees.en
dc.format.extent9 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1242/bio.040626en
dc.identifier.urihttp://hdl.handle.net/10919/96030en
dc.identifier.volume8en
dc.language.isoenen
dc.publisherThe Company of Biologistsen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectThunniform locomotionen
dc.subjectCaudal finen
dc.subjectThrust productionen
dc.subjectFin sweep angleen
dc.titleEffects of fish caudal fin sweep angle and kinematics on thrust production during low-speed thunniform swimmingen
dc.title.serialBiology Openen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bio040626.full.pdf
Size:
3.96 MB
Format:
Adobe Portable Document Format
Description: