HEK293T Cells with TFAM Disruption by CRISPR-Cas9 as a Model for Mitochondrial Regulation
dc.contributor.author | de Oliveira, Vanessa Cristina | en |
dc.contributor.author | Santos Roballo, Kelly Cristine | en |
dc.contributor.author | Mariano Junior, Clesio Gomes | en |
dc.contributor.author | Santos, Sarah Ingrid Pinto | en |
dc.contributor.author | Bressan, Fabiana Fernandes | en |
dc.contributor.author | Chiaratti, Marcos Roberto | en |
dc.contributor.author | Tucker, Elena J. | en |
dc.contributor.author | Davis, Erica E. | en |
dc.contributor.author | Concordet, Jean-Paul | en |
dc.contributor.author | Ambrosio, Carlos Eduardo | en |
dc.date.accessioned | 2022-08-24T17:13:03Z | en |
dc.date.available | 2022-08-24T17:13:03Z | en |
dc.date.issued | 2022-01 | en |
dc.description.abstract | The mitochondrial transcription factor A (TFAM) is considered a key factor in mitochondrial DNA (mtDNA) copy number. Given that the regulation of active copies of mtDNA is still not fully understood, we investigated the effects of CRISPR-Cas9 gene editing of TFAM in human embryonic kidney (HEK) 293T cells on mtDNA copy number. The aim of this study was to generate a new in vitro model by CRISPR-Cas9 system by editing the TFAM locus in HEK293T cells. Among the resulting single-cell clones, seven had high mutation rates (67-96%) and showed a decrease in mtDNA copy number compared to control. Cell staining with Mitotracker Red showed a reduction in fluorescence in the edited cells compared to the non-edited cells. Our findings suggest that the mtDNA copy number is directly related to TFAM control and its disruption results in interference with mitochondrial stability and maintenance. | en |
dc.description.notes | FundingSao Paulo Research Foundation FAPESP, grant #2017/08896-4, grant#2019/04442-4 to VCO. Website: http://fapesp.br- accessed on 10 October 2021. EJT was supported by an Australian National Health and Medical Research Council fellowship (1054432) and an Australian Mito Foundation grant. | en |
dc.description.sponsorship | CNPq [431508/2018-6] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.3390/life12010022 | en |
dc.identifier.eissn | 2075-1729 | en |
dc.identifier.issue | 1 | en |
dc.identifier.other | 22 | en |
dc.identifier.pmid | 35054416 | en |
dc.identifier.uri | http://hdl.handle.net/10919/111618 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | CRISPR-Cas9 | en |
dc.subject | gene editing | en |
dc.subject | HEK293T cells | en |
dc.subject | mitochondrial DNA | en |
dc.subject | TFAM | en |
dc.title | HEK293T Cells with TFAM Disruption by CRISPR-Cas9 as a Model for Mitochondrial Regulation | en |
dc.title.serial | Life-Basel | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- life-12-00022.pdf
- Size:
- 2.92 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version