VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Ecology of Root-Feeding Insect Assemblages in Fire-Manipulated Longleaf Pine-Wiregrass Ecosystems

TR Number

Date

2013-05-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Root-feeding insects can have top-down influence on vegetative composition and ecosystem processes; however, they may respond to bottom-up factors such as soil resources, site productivity, and disturbance.  My research addressed the following questions: (1) Do disturbance (fire), vegetative composition, soil resources, and fine root standing mass influence the structure of root-feeding insect assemblages? (2) What types of roots do root-feeding insects eat, and do they forage selectively?  (3) Do root-feeding insects influence fine root productivity?  To address these questions, I studied root-feeding insect assemblages in longleaf pine wiregrass (Pinus palustris-Aristida stricta) ecosystems of southwestern Georgia, U.S.A.  On a random basis, study sites were burned at least every other year (B), or left unburned (UB) for about 9 years.  Fine root productivity and root-feeding insect abundances were sampled repeatedly across 54 random plots in UB and B sites.  In Chapter 2, I characterized spatial and temporal patterns of root-feeding insect abundance, understory plant composition, soil resource availability, and fine root standing mass within each plot.  Insect population densities were low overall, but abundance, patchiness, and diversity were greater in UB sites.  Abundance patterns were significantly related to vegetative composition.  In Chapter 3, I quantified the diet of root-feeding insects by measuring the natural abundance of carbon (C) and nitrogen (N) stable isotopes in insects and fine roots.  Using 13C abundance, I examined the contribution of warm season grass roots to insect diet, relative to the proportion of warm season grass roots within adjacent root standing crop samples; 15N abundance was used to detect omnivory.  Overall, insects appeared to be non-selective herbivores and omnivores that may alter foraging behavior to maintain a mixed diet (i.e. reducing or increasing warm season grass consumption when its abundance was high or low, respectively).  The extent of omnivory varied within and among taxa.  In Chapter 4, I estimated the top-down influence of root-feeding insects on fine root productivity by comparison of ingrowth cores with or without an insecticide treatment.  I detected a weak positive effect of herbivores on the productivity of non-grass fine roots (< 10% of fine root productivity).

Description

Keywords

Root-feeding insect, fine root herbivore, belowground herbivory, longleaf pine, white grub, wireworm, weevil, cicada

Citation