VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

AUTOPAGER: Auto-tuning Memory-Mapped I/O Parameters in Userspace

dc.contributor.authorYoussef, Karimen
dc.contributor.authorShah, Niteyaen
dc.contributor.authorGokhale, Mayaen
dc.contributor.authorPearce, Rogeren
dc.contributor.authorFeng, Wu-chunen
dc.date.accessioned2024-03-04T15:52:25Zen
dc.date.available2024-03-04T15:52:25Zen
dc.date.issued2022en
dc.description.abstractThe exponential growth in dataset sizes has shifted the bottleneck of high-performance data analytics from the compute subsystem to the memory and storage subsystems. This bottleneck has led to the proliferation of non-volatile memory (NVM). To bridge the performance gap between the Linux I/O subsystem and NVM, userspace memory-mapped I/O enables application-specific I/O optimizations. Specifically, UMap, an open-source userspace memory-mapping tool, exposes tunable paging parameters to application users, such as page size and degree of paging concurrency. Tuning these parameters is computationally intractable due to the vast search space and the cost of evaluating each parameter combination. To address this challenge, we present Autopager, a tool for auto-tuning userspace paging parameters. Our evaluation, using five data-intensive applications with UMap, shows that Autopager automatically achieves comparable performance to exhaustive tuning with 10 x less tuning overhead. and 16.3 x and 1.52 x speedup over UMap with default parameters and UMap with page-size only tuning, respectively.en
dc.description.versionAccepted versionen
dc.format.extent7 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/HPEC55821.2022.9926409en
dc.identifier.isbn9781665497862en
dc.identifier.issn2377-6943en
dc.identifier.orcidFeng, Wu-chun [0000-0002-6015-0727]en
dc.identifier.urihttps://hdl.handle.net/10919/118257en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectautotuningen
dc.subjectvirtual memoryen
dc.subjectbig dataen
dc.subjectpagingen
dc.subjectmemory-mapped I/Oen
dc.subjectmemoryen
dc.subjectstorageen
dc.titleAUTOPAGER: Auto-tuning Memory-Mapped I/O Parameters in Userspaceen
dc.title.serial2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC)en
dc.typeConference proceedingen
dc.type.dcmitypeTexten
dc.type.otherProceedings Paperen
dc.type.otherBook in seriesen
pubs.finish-date2022-09-23en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen
pubs.organisational-group/Virginia Tech/Faculty of Health Sciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.start-date2022-09-19en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Feng-HPEC-AutoPager.pdf
Size:
227.86 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: