A Database Supported Modeling Environment for Pandemic Planning and Course of Action Analysis

dc.contributor.authorMa, Yifeien
dc.contributor.committeechairMarathe, Madhav Vishnuen
dc.contributor.committeechairChen, Jiangzhuoen
dc.contributor.committeememberFox, Edward A.en
dc.contributor.committeememberBisset, Keith R.en
dc.contributor.committeememberEubank, Stephen G.en
dc.contributor.committeememberVullikanti, Anil Kumar S.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2013-06-25T08:00:10Zen
dc.date.available2013-06-25T08:00:10Zen
dc.date.issued2013-06-24en
dc.description.abstractPandemics can significantly impact public health and society, for instance, the 2009 H1N1<br />and the 2003 SARS. In addition to analyzing the historic epidemic data, computational simulation of epidemic propagation processes and disease control strategies can help us understand the spatio-temporal dynamics of epidemics in the laboratory. Consequently, the public can be better prepared and the government can control future epidemic outbreaks more effectively. Recently, epidemic propagation simulation systems, which use high performance computing technology, have been proposed and developed to understand disease propagation processes. However, run-time infection situation assessment and intervention adjustment, two important steps in modeling disease propagation, are not well supported in these simulation systems. In addition, these simulation systems are computationally efficient in their simulations, but most of them have<br />limited capabilities in terms of modeling interventions in realistic scenarios.<br />In this dissertation, we focus on building a modeling and simulation environment for epidemic propagation and propagation control strategy. The objective of this work is to<br />design such a modeling environment that both supports the previously missing functions,<br />meanwhile, performs well in terms of the expected features such as modeling fidelity,<br />computational efficiency, modeling capability, etc. Our proposed methodologies to build<br />such a modeling environment are: 1) decoupled and co-evolving models for disease propagation, situation assessment, and propagation control strategy, and 2) assessing situations and simulating control strategies using relational databases. Our motivation for exploring these methodologies is as follows: 1) a decoupled and co-evolving model allows us to design modules for each function separately and makes this complex modeling system design simpler, and 2) simulating propagation control strategies using relational databases improves the modeling capability and human productivity of using this modeling environment. To evaluate our proposed methodologies, we have designed and built a loosely coupled and database supported epidemic modeling and simulation environment. With detailed experimental results and realistic case studies, we demonstrate that our modeling environment provides the missing functions and greatly enhances many expected features, such as modeling capability, without significantly sacrificing computational efficiency and scalability.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:1227en
dc.identifier.urihttp://hdl.handle.net/10919/23264en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectEpidemic simulationen
dc.subjectDatabase systemen
dc.subjectDistributed systemen
dc.titleA Database Supported Modeling Environment for Pandemic Planning and Course of Action Analysisen
dc.typeDissertationen
thesis.degree.disciplineComputer Science and Applicationsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ma_Y_D_2013.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format