A geometric approach for accelerating neural networks designed for classification problems

dc.contributor.authorSaffar, Mohsenen
dc.contributor.authorKalhor, Ahmaden
dc.contributor.authorHabibnia, Alien
dc.date.accessioned2025-02-18T13:01:51Zen
dc.date.available2025-02-18T13:01:51Zen
dc.date.issued2024-07-30en
dc.description.abstractThis paper proposes a geometric-based technique for compressing convolutional neural networks to accelerate computations and improve generalization by eliminating non-informative components. The technique utilizes a geometric index called separation index to evaluate the functionality of network elements such as layers and filters. By applying this index along with center-based separation index, a systematic algorithm is proposed that optimally compresses convolutional and fully connected layers. The algorithm excludes layers with low performance, selects the best subset of filters in the filtering layers, and tunes the parameters of fully connected layers using center-based separation index. An illustrative example of classifying CIFAR-10 dataset is presented to explain the algorithm step-by-step. The proposed method achieves impressive pruning results on networks trained by CIFAR-10 and ImageNet datasets, with 87.5%, 77.6%, and 78.8% of VGG16, GoogLeNet, and DenseNet parameters pruned, respectively. Comparisons with state-of-the-art works are provided to demonstrate the effectiveness of the proposed method.en
dc.description.versionPublished versionen
dc.format.extent16 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 17590 (Article number)en
dc.identifier.doihttps://doi.org/10.1038/s41598-024-68172-6en
dc.identifier.eissn2045-2322en
dc.identifier.issn2045-2322en
dc.identifier.issue1en
dc.identifier.other10.1038/s41598-024-68172-6 (PII)en
dc.identifier.pmid39079975en
dc.identifier.urihttps://hdl.handle.net/10919/124615en
dc.identifier.volume14en
dc.language.isoenen
dc.publisherNature Portfolioen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/39079975en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectNetwork compressionen
dc.subjectConvolutional neural networken
dc.subjectDataflow evaluationen
dc.subjectSeparation indexen
dc.titleA geometric approach for accelerating neural networks designed for classification problemsen
dc.title.serialScientific Reportsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2024-07-22en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Economicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-024-68172-6.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: