Electroresponsive Hydrogels for Therapeutic Applications in the Brain
dc.contributor.author | Khan, Zerin Mahzabin | en |
dc.contributor.author | Wilts, Emily | en |
dc.contributor.author | Vlaisavljevich, Eli | en |
dc.contributor.author | Long, Timothy E. | en |
dc.contributor.author | Verbridge, Scott S. | en |
dc.date.accessioned | 2022-02-05T19:34:49Z | en |
dc.date.available | 2022-02-05T19:34:49Z | en |
dc.date.issued | 2021-12-01 | en |
dc.date.updated | 2022-02-05T19:34:45Z | en |
dc.description.abstract | Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 36 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 2100355 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1002/mabi.202100355 | en |
dc.identifier.eissn | 1616-5195 | en |
dc.identifier.issn | 1616-5187 | en |
dc.identifier.orcid | Verbridge, Scott [0000-0002-4074-8799] | en |
dc.identifier.pmid | 34800348 | en |
dc.identifier.uri | http://hdl.handle.net/10919/108148 | en |
dc.language.iso | en | en |
dc.publisher | Wiley | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000724117400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Life Sciences & Biomedicine | en |
dc.subject | Technology | en |
dc.subject | Physical Sciences | en |
dc.subject | Biochemistry & Molecular Biology | en |
dc.subject | Materials Science, Biomaterials | en |
dc.subject | Polymer Science | en |
dc.subject | Materials Science | en |
dc.subject | biosensors | en |
dc.subject | controlled delivery | en |
dc.subject | electroconductive hydrogels | en |
dc.subject | neural electrode interface | en |
dc.subject | neural stem cell differentiation | en |
dc.subject | MESENCHYMAL STEM-CELLS | en |
dc.subject | CONDUCTING POLYMER HYDROGEL | en |
dc.subject | ELECTRICAL-STIMULATION | en |
dc.subject | IN-VIVO | en |
dc.subject | CARBON NANOTUBE | en |
dc.subject | DRUG-DELIVERY | en |
dc.subject | NEURAL DIFFERENTIATION | en |
dc.subject | MICROELECTRODE ARRAYS | en |
dc.subject | SURFACE MODIFICATION | en |
dc.subject | BIOACTIVE MOLECULES | en |
dc.subject | Polymers | en |
dc.subject | 0303 Macromolecular and Materials Chemistry | en |
dc.subject | 0903 Biomedical Engineering | en |
dc.subject | 0904 Chemical Engineering | en |
dc.title | Electroresponsive Hydrogels for Therapeutic Applications in the Brain | en |
dc.title.serial | Macromolecular Bioscience | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Early Access | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Engineering/Biomedical Engineering and Mechanics | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Durelle Scott | en |
pubs.organisational-group | /Virginia Tech/Graduate students | en |
pubs.organisational-group | /Virginia Tech/Graduate students/Doctoral students | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Khan_etal_2021_ElectroresponsiveHydrogelReview.pdf
- Size:
- 2.39 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version