Researching on Multisensory Design Communication for Design Development and Collaboration among Designers and Stakeholders
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Focusing on VR/AR-enhanced design representations, this research explores Multisensory Design Communication (MDC) in the context of design development and collaboration among design professionals and stakeholders. To address the differences between various groups of design participants, three secondary studies were conducted: Study A examined MDC among inexperienced LA designers, Study B focused on MDC among experienced LA designers and other design consultants, and Study C explored MDC between designers and stakeholders. These studies aim to understand how design representation methods, project phases, and participant roles influence design perception, cognition, and the overall communication process in MDC. Based on the research findings, the benefits of VR/AR-enhanced representations in design practice are discussed, and guidelines for selecting appropriate design representation methods for different design participants and project phases are developed accordingly.
The findings from the three secondary studies indicate that VR/AR-enhanced representations significantly improve entry-level designers' perception of design information, especially the design details, though their impact on overall design cognition is less notable. These technologies enhance interaction, immersion, engagement, and enjoyment during MDC, particularly benefiting less experienced LA designers. Experienced and multidisciplinary designers tend to favor traditional methods in the early stages but appreciate the use of VR/AR technologies during design development. The use of VR/AR-enhanced representations also improve their perception of design details rather than design cognition. Meanwhile, similar to inexperienced designers, these innovative representations can evoke a more immersive, interactive, and engaging MDC experience for experienced professionals. Stakeholders also benefit from the immersive and interactive features of VR/AR technologies, which stimulate creative thinking and enhance MDC during project presentations, though they are generally satisfied with traditional approaches for presentations and reviews. When comparing the impact of VR/AR-enhanced representations across the three different groups of design participants, inexperienced LA designers may be the group most influenced by new technologies such as VR/AR, and they potentially gain the most benefit from them. Additionally, VR/AR-enhanced representation methods tend to have a greater impact on stakeholders compared to experienced designers. Based on these research findings, guidelines for selecting appropriate representation methods for various design participants are proposed, recommending the use of VR/AR throughout the project for less experienced teams and selectively for experienced and multidisciplinary professionals.
By exploring MDC and related representation methods in design practice within an ecologically valid research environment, this study contributes to the LA design process, practice, technologies, and theory. In terms of the design process, it explores how key factors influence MDC in the LA design workflow, offering theoretical and practical suggestions to enhance the LA design process from the perspective of design communication. In practice, it provides insights into improving collaboration, decision-making, and engagement in real-world LA projects. Regarding design technologies, the research examines the role of VR/AR-enhanced representations and offers guidelines for integrating these innovative technologies with traditional approaches. Lastly, this research advances LA theory by expanding knowledge on design communication and representation through the lens of design practice.