Reliability-Based Design Optimization of Nonlinear Beam-Columns

Files

TR Number

Date

2018-04-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation addresses the ultimate strength analysis of nonlinear beam-columns under axial compression, the sensitivity of the ultimate strength, structural optimization and reliability analysis using ultimate strength analysis, and Reliability-Based Design Optimization (RBDO) of the nonlinear beam-columns. The ultimate strength analysis is based on nonlinear beam theory with material and geometric nonlinearities. Nonlinear constitutive law is developed for elastic-perfectly-plastic beam cross-section consisting of base plate and T-bar stiffener. The analysis method is validated using commercial nonlinear finite element analysis. A new direct solving method is developed, which combines the original governing equations with their derivatives with respect to deformation matric and solves for the ultimate strength directly. Structural optimization and reliability analysis use a gradient-based algorithm and need accurate sensitivities of the ultimate strength to design variables. Semi-analytic sensitivity of the ultimate strength is calculated from a linear set of analytical sensitivity equations which use the Jacobian matrix of the direct solving method. The derivatives of the structural residual equations in the sensitivity equation set are calculated using complex step method. The semi-analytic sensitivity is more robust and efficient as compared to finite difference sensitivity. The design variables are the cross-sectional geometric parameters. Random variables include material properties, geometric parameters, initial deflection and nondeterministic load. Failure probabilities calculated by ultimate strength reliability analysis are validated by Monte Carlo Simulation. Double-loop RBDO minimizes structural weight with reliability index constraint. The sensitivity of reliability index with respect to design variables is calculated from the gradient of limit state function at the solution of reliability analysis. By using the ultimate strength direct solving method, semi-analytic sensitivity and gradient-based optimization algorithm, the RBDO method is found to be robust and efficient for nonlinear beam-columns. The ultimate strength direct solving method, semi-analytic sensitivity, structural optimization, reliability analysis, and RBDO method can be applied to more complicated engineering structures including stiffened panels and aerospace/ocean structures.

Description

Keywords

Ultimate Strength, Nonlinear Beam-Column, Sensitivity Analysis, Structural Optimization, Structural Reliability, Reliability-Based Design Optimization

Citation