VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

A Curvature-Corrected Rough Surface Scattering Theory Through The Single-Scatter Subtraction Method

TR Number

Date

2019-03-21

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

A new technique is presented to study radio propagation and rough surface scattering problems based on a reformulation of the Magnetic Field Integration Equation (MFIE) called the Single-Scatter Subtraction (S^3) method. This technique amounts to a physical preconditioning by separating the single- and multiple-scatter currents and removing the single-scattering contribution from the integral term that is present in the MFIE. This requires the calculation of a new quantity that is the kernel of the MFIE integral call the kernel integral or Gbar. In this work, 1-dimensional deterministically rough surfaces are simulated by surfaces consisting of single and multiple cosines. In order to truncate the problem domain, a beam illumination is used as the source term and it is shown that this also causes the kernel integral to have a finite support. Using the Single Scatter Subtraction method on these surfaces, closed-form expressions are found for the kernel integral and thus the single-scatter current for a well defined region of validity of surface parameters which may then be efficiently radiated into the far field numerically. Both the closed-form expressions, and the computed radiated fields are studied for their physical significance. This provides a clear physical intuition for the technique as an augmentation to existing ones as a bent-plane approximation as shown analytically and also validated by numeric results. Further analysis resolves a controversy on the nature of Bragg scatter which is found to be a multiple-scatter phenomenon. Error terms present in the kernel integral also raise new questions on the effect of truncation for any MFIE-based solution. Additionally, a dramatic enhancement of backscatter predicted by this new approach versus the Kirchhoff method is observed as the angle of incidence increases due to the error terms.

Description

Keywords

electromagnetics, rough surface scattering, single-scatter, integral equations

Citation