Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture

dc.contributor.authorLiebe, Douglas M.en
dc.contributor.authorHall, Mary Bethen
dc.contributor.authorWhite, Robin R.en
dc.contributor.departmentAnimal and Poultry Sciencesen
dc.date.accessioned2020-12-03T17:54:51Zen
dc.date.available2020-12-03T17:54:51Zen
dc.date.issued2020-11-01en
dc.description.abstractQuestions regarding the balance between the contribution to human nutrition and the environmental impact of livestock food products rarely evaluate specific species or how to accomplish the recommended depopulation. The objective of this study was to assess current contributions of the US dairy industry to the supply of nutrients and environmental impact, characterize potential impacts of alternative land use for land previously used for crops for dairy cattle, and evaluate the impacts of these approaches on US dairy herd depopulation. We modeled 3 scenarios to reflect different sets of assumptions for how and why to remove dairy cattle from the US food production system coupled with 4 land-use strategies for the potential newly available land previously cropped for dairy feed. Scenarios also differed in assumptions of how to repurpose land previously used to grow grain for dairy cows. The current system provides sufficient fluid milk to meet the annual energy, protein, and calcium requirements of 71.2, 169, and 254 million people, respectively. Vitamins supplied by dairy products also make up a high proportion of total domestic supplies from foods, with dairy providing 39% of the vitamin A, 54% of the vitamin D, 47% of the riboflavin, 57% of the vitamin B12, and 29% of the choline available for human consumption in the United States. Retiring (maintaining animals without milk harvesting) dairy cattle under their current managemerit resulted in no change in absolute greenhouse gas emissions (GHGE) relative to the current production system. Both depopulation and retirement to pasture resulted in modest reductions (6.8-12.0%) in GHGE relative to the current agricultural system. Most dairy cow removal scenarios reduced availability of essential micronutrients such as a-linolenic acid, Ca, and vitamins A, D, B12, and choline. Those removal scenarios that did not reduce micronutrient availability also did not improve GHGE relative to the current production system. These results suggest that removal of dairy cattle to reduce GHGE without reducing the supply of the most limiting nutrients to the population would be difficult.en
dc.description.notesResearch was supported by Dairy Management Inc. (Rosemont, IL). The authors have not stated any conflicts of interest.en
dc.description.sponsorshipDairy Management Inc. (Rosemont, IL)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.3168/jds.2020-18570en
dc.identifier.eissn1525-3198en
dc.identifier.issn0022-0302en
dc.identifier.issue11en
dc.identifier.pmid33076178en
dc.identifier.urihttp://hdl.handle.net/10919/101005en
dc.identifier.volume103en
dc.language.isoenen
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectdairyen
dc.subjectcalciumen
dc.subjectproteinen
dc.subjectgreenhouse gasen
dc.titleContributions of dairy products to environmental impacts and nutritional supplies from United States agricultureen
dc.title.serialJournal of Dairy Scienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PIIS0022030220307852.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description: