Identifying and forecasting importation and asymptomatic spreaders of multi-drug resistant organisms in hospital settings

dc.contributor.authorCui, Jiamingen
dc.contributor.authorHeavey, Jacken
dc.contributor.authorKlein, Eilien
dc.contributor.authorMadden, Gregory R.en
dc.contributor.authorSifri, Costi D.en
dc.contributor.authorVullikanti, Anilen
dc.contributor.authorPrakash, B. Adityaen
dc.date.accessioned2026-02-05T18:58:07Zen
dc.date.available2026-02-05T18:58:07Zen
dc.date.issued2025-03-07en
dc.description.abstractHealthcare-associated infections (HAIs) from multi-drug resistant organisms (MDROs) pose a significant challenge for healthcare systems. Patients can arrive at hospitals already infected ("importation”) or acquire infections during their stay ("nosocomial infection”). Many cases, often asymptomatic, complicate rapid identification due to testing limitations and delays. Although recent advancements in mathematical modeling and machine learning have aimed to identify at-risk patients, these methods face challenges: transmission models often overlook valuable electronic health record (EHR) data, while machine learning approaches typically lack mechanistic insights into underlying processes. To address these issues, we propose NeurABM, a novel framework that integrates neural networks and agent-based models (ABM) to leverage the strengths of both methods. NeurABM simultaneously learns a neural network for patient-level importation predictions and an ABM for infection identification. Our findings show that NeurABM significantly outperforms existing methods, marking a breakthrough in accurately identifying importation cases and forecasting future nosocomial infections in clinical practice.en
dc.description.versionPublished versionen
dc.format.extent11 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 147 (Article number)en
dc.identifier.doihttps://doi.org/10.1038/s41746-025-01529-xen
dc.identifier.eissn2398-6352en
dc.identifier.issn2398-6352en
dc.identifier.issue1en
dc.identifier.orcidCui, Jiaming [0000-0002-2685-2776]en
dc.identifier.otherPMC11889233en
dc.identifier.other10.1038/s41746-025-01529-x (PII)en
dc.identifier.pmid40055525en
dc.identifier.urihttps://hdl.handle.net/10919/141175en
dc.identifier.volume8en
dc.language.isoenen
dc.publisherNature Portfolioen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/40055525en
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.titleIdentifying and forecasting importation and asymptomatic spreaders of multi-drug resistant organisms in hospital settingsen
dc.title.serialNPJ Digital Medicineen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
dcterms.dateAccepted2025-02-19en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Computer Scienceen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Identifying and forecasting importation and asymptomatic spreaders of multi-drug resistant organisms in hospital settings.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: