Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy
dc.contributor.author | Zhang, Y. H. Percival | en |
dc.contributor.author | Mielenz, Jonathan R. | en |
dc.contributor.department | Biological Systems Engineering | en |
dc.contributor.department | Institute for Critical Technology and Applied Science | en |
dc.date.accessioned | 2017-09-20T18:17:20Z | en |
dc.date.available | 2017-09-20T18:17:20Z | en |
dc.date.issued | 2011-01-31 | en |
dc.date.updated | 2017-09-20T18:17:20Z | en |
dc.description.abstract | The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes <em>in vitro</em> can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C<sub>6</sub>H<sub>10</sub>O<sub>5</sub> (aq) + 7 H<sub>2</sub>O (l) à 12 H<sub>2</sub> (g) + 6 CO<sub>2</sub> (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H<sub>2</sub> mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H<sub>2</sub> mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO<sub>2</sub> fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Zhang, Y.-H.; Mielenz, J.R. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy. Energies 2011, 4, 254-275. | en |
dc.identifier.doi | https://doi.org/10.3390/en4020254 | en |
dc.identifier.uri | http://hdl.handle.net/10919/79150 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | artificial photosynthesis | en |
dc.subject | carbohydrate economy | en |
dc.subject | carbon dioxide utilization | en |
dc.subject | hydrogen carrier | en |
dc.subject | hydrogen production | en |
dc.subject | cell-free synthetic pathway biotransformation (SyPaB) | en |
dc.title | Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy | en |
dc.title.serial | Energies | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |