Enhancing long-term forecasting: Learning from COVID-19 models
dc.contributor.author | Rahmandad, Hazhir | en |
dc.contributor.author | Xu, Ran | en |
dc.contributor.author | Ghaffarzadegan, Navid | en |
dc.date.accessioned | 2023-01-30T18:01:10Z | en |
dc.date.available | 2023-01-30T18:01:10Z | en |
dc.date.issued | 2022-05-01 | en |
dc.date.updated | 2023-01-28T15:46:06Z | en |
dc.description.abstract | While much effort has gone into building predictive models of the COVID-19 pandemic, some have argued that early exponential growth combined with the stochastic nature of epidemics make the long-term prediction of contagion trajectories impossible. We conduct two complementary studies to assess model features supporting better long-term predictions. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. We find that better long-term predictions correlate with: (1) capturing the physics of transmission (instead of using black-box models); (2) projecting human behavioral reactions to an evolving pandemic; and (3) resetting state variables to account for randomness not captured in the model before starting projection. Second, we introduce a very simple model, SEIRb, that incorporates these features, and few other nuances, offers informative predictions for as far as 20-weeks ahead, with accuracy comparable with the best models in the CDC set. Key to the long-term predictive power of multi-wave COVID-19 trajectories is capturing behavioral responses endogenously: balancing feedbacks where the perceived risk of death continuously changes transmission rates through the adoption and relaxation of various Non-Pharmaceutical Interventions (NPIs). | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1371/journal.pcbi.1010100 | en |
dc.identifier.eissn | 1553-7358 | en |
dc.identifier.issn | 1553-734X | en |
dc.identifier.issue | 5 | en |
dc.identifier.orcid | Ghaffarzadegan, Navid [0000-0003-3632-8588] | en |
dc.identifier.other | PCOMPBIOL-D-21-02038 (PII) | en |
dc.identifier.pmid | 35587466 | en |
dc.identifier.uri | http://hdl.handle.net/10919/113560 | en |
dc.identifier.volume | 18 | en |
dc.language.iso | en | en |
dc.publisher | PLOS | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/35587466 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | epidemics | en |
dc.subject | forecast | en |
dc.subject | SEIR | en |
dc.subject | behavior change | en |
dc.subject | system dynamics | en |
dc.subject.mesh | Humans | en |
dc.subject.mesh | Forecasting | en |
dc.subject.mesh | Pandemics | en |
dc.subject.mesh | COVID-19 | en |
dc.title | Enhancing long-term forecasting: Learning from COVID-19 models | en |
dc.title.serial | PLoS Computational Biology | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
dcterms.dateAccepted | 2022-04-12 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Report test | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Enhancing long-term forecasting Learning from COVID-19 models.pdf
- Size:
- 1.26 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version