VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Transferring Learned Behaviors between Similar and Different Radios

TR Number

Date

2024-06-01

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Transfer learning (TL) techniques have proven useful in a wide variety of applications traditionally dominated by machine learning (ML), such as natural language processing, computer vision, and computer-aided design. Recent extrapolations of TL to the radio frequency (RF) domain are being used to increase the potential applicability of RFML algorithms, seeking to improve the portability of models for spectrum situational awareness and transmission source identification. Unlike most of the computer vision and natural language processing applications of TL, applications within the RF modality must contend with inherent hardware distortions and channel condition variations. This paper seeks to evaluate the feasibility and performance trade-offs when transferring learned behaviors from functional RFML classification algorithms, specifically those designed for automatic modulation classification (AMC) and specific emitter identification (SEI), between homogeneous radios of similar construction and quality and heterogeneous radios of different construction and quality. Results derived from both synthetic data and over-the-air experimental collection show promising performance benefits from the application of TL to the RFML algorithms of SEI and AMC.

Description

Keywords

transfer learning, radio frequency machine learning (RFML), automatic modulation classification (AMC), specific emitter identification (SEI), captured data

Citation

Muller, B.P.; Olds, B.E.; Wong, L.J.; Michaels, A.J. Transferring Learned Behaviors between Similar and Different Radios. Sensors 2024, 24, 3574.