Designing for Bi-Directional Transparency in Human-AI-Robot-Teaming

dc.contributor.authorHolder, Ericen
dc.contributor.authorHuang, Lixiaoen
dc.contributor.authorChiou, Erinen
dc.contributor.authorJeon, Myounghoonen
dc.contributor.authorLyons, Joseph B.en
dc.date.accessioned2025-01-10T14:16:58Zen
dc.date.available2025-01-10T14:16:58Zen
dc.date.issued2021-09en
dc.date.issued2021-11-12en
dc.description.abstract<jats:p> This paper takes a practitioner’s perspective on advancing bi-directional transparency in human-AI-robot teams (HARTs). Bi-directional transparency is important for HARTs because the better that people and artificially intelligent agents can understand one another’s capabilities, limits, inputs, outputs and contexts in a given task environment; the better they can work as a team to accomplish shared goals, interdependent tasks, and overall missions. This understanding can be built, augmented, broken and repaired at various stages across the technology life cycle, including the conceptual design; iterative design of software, hardware and interfaces; marketing and sales; system training; operational use; and system updating and adaptation stages. This paper provides an overview of some best practices and challenges in building this bi-directional transparency at different points in the technology life cycle of human-AI-robot systems. The goal is to help advance a wider discussion and sharing of lessons learned from recent work in this area. </jats:p>en
dc.description.notesYes, full paper (Peer reviewed?)en
dc.description.versionPublished versionen
dc.format.extentPages 57-61en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1177/1071181321651052en
dc.identifier.eissn1071-1813en
dc.identifier.issn2169-5067en
dc.identifier.issue1en
dc.identifier.orcidJeon, Myounghoon [0000-0003-2908-671X]en
dc.identifier.urihttps://hdl.handle.net/10919/124103en
dc.identifier.volume65en
dc.language.isoenen
dc.publisherSAGE Publicationsen
dc.relation.urihttps://doi.org/10.1177/1071181321651052en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleDesigning for Bi-Directional Transparency in Human-AI-Robot-Teamingen
dc.title.serialProceedings of the Human Factors and Ergonomics Society Annual Meetingen
dc.typeConference proceedingen
dc.type.dcmitypeTexten
dc.type.otherConference Proceedingen
pubs.finish-date2021-10-07en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen
pubs.start-date2021-10-04en

Files

Original bundle
Now showing 1 - 1 of 1
Name:
HFES 2021 Designing for Bi-Directional Transparency in Human-AI-Robot-Teaming (Holder-final).doc
Size:
71 KB
Format:
Microsoft Word
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: