A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models

dc.contributor.authorKhatun, Aminaen
dc.contributor.authorNisha, M. N.en
dc.contributor.authorChatterjee, Siddharthen
dc.contributor.authorSridhar, Venkataramanaen
dc.date.accessioned2025-01-21T14:56:54Zen
dc.date.available2025-01-21T14:56:54Zen
dc.date.issued2024-08en
dc.description.abstractThis study investigates the feasibility of using hybrid models namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-Gated Recurrent Unit (GRU), for short-to-medium range streamflow forecasting in the Mahanadi River basin in India. The performance of these hybrid models is compared with that of standalone models. It investigates the impact of selected parameters and associated time lags on the model performance and offers valuable insights into the use of hybrid models for runoff simulation. The hybrid CNN-LSTM model proves to be robust in capturing the overall time series and the typical high peak flows in both the correlation-based and constant lag cases. Also, the upstream discharges play a significant role in improving the streamflow forecasting. Furthermore, the consideration of all input variables with a constant time lag equal to the basin lag time may yield better flood forecasts, even in cases where computational resources are limited.en
dc.description.versionAccepted versionen
dc.format.extent16 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierARTN 106126 (Article number)en
dc.identifier.doihttps://doi.org/10.1016/j.envsoft.2024.106126en
dc.identifier.eissn1873-6726en
dc.identifier.issn1364-8152en
dc.identifier.orcidSridhar, Venkataramana [0000-0002-1003-2247]en
dc.identifier.urihttps://hdl.handle.net/10919/124272en
dc.identifier.volume179en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectLSTMen
dc.subjectGRUen
dc.subjectCNN-LSTMen
dc.subjectCNN-GRUen
dc.subjectFlood forecastingen
dc.titleA novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning modelsen
dc.title.serialEnvironmental Modelling & Softwareen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Agriculture & Life Sciencesen
pubs.organisational-groupVirginia Tech/Agriculture & Life Sciences/Biological Systems Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Agriculture & Life Sciences/CALS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EMS accepted paper.pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: