SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital
dc.contributor.author | Guo, Yang | en |
dc.contributor.author | Pavosevic, Fabijan | en |
dc.contributor.author | Sivalingam, Kantharuban | en |
dc.contributor.author | Becker, Ute | en |
dc.contributor.author | Valeev, Edward F. | en |
dc.contributor.author | Neese, Frank | en |
dc.date.accessioned | 2023-09-29T13:28:46Z | en |
dc.date.available | 2023-09-29T13:28:46Z | en |
dc.date.issued | 2023-03 | en |
dc.description.abstract | In this work, a linear scaling explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12) is presented. By using the idea of a domain-based local pair natural orbital (DLPNO), computational scaling of the conventional NEVPT2-F12 is reduced to near-linear scaling. For low-lying excited states of organic molecules, the excitation energies predicted by DLPNO-NEVPT2-F12 are as accurate as the exact NEVPT2-F12 results. Some cluster models of rhodopsin are studied using the new algorithm. Our new method is able to study systems with more than 3300 basis functions and an active space containing 12 p-electrons and 12 p-orbitals. However, even larger calculations or active spaces would still be feasible. | en |
dc.description.notes | The authors gratefully acknowledge the financial support by the Max Planck Society and the cluster of excellence (RESOLV, University of Bochum, Grant No. EXC 1069). Y.G. was supported by the Qilu Young Scholar Program from Shandong University and the National Natural Science Foundation of China (Grant No. 22273052). E.F.V. was supported by the U.S. National Science Foundation under Award No. 1931347. | en |
dc.description.sponsorship | Max Planck Society; Cluster of excellence (RESOLV, University of Bochum) [EXC 1069]; Qilu Young Scholar Program from Shandong University; National Natural Science Foundation of China [22273052]; U.S. National Science Foundation [1931347] | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1063/5.0144260 | en |
dc.identifier.eissn | 1089-7690 | en |
dc.identifier.issn | 0021-9606 | en |
dc.identifier.issue | 12 | en |
dc.identifier.other | 124120 | en |
dc.identifier.pmid | 37003738 | en |
dc.identifier.uri | http://hdl.handle.net/10919/116372 | en |
dc.identifier.volume | 158 | en |
dc.language.iso | en | en |
dc.publisher | AIP Publishing | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | coupled-cluster singles | en |
dc.subject | basis-set convergence | en |
dc.subject | analytical energy gradients | en |
dc.subject | wave-functions | en |
dc.subject | efficient implementation | en |
dc.subject | density-matrices | en |
dc.subject | hartree-fock | en |
dc.subject | approximations | en |
dc.subject | i. | en |
dc.subject | doubles | en |
dc.title | SparseMaps-A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital | en |
dc.title.serial | Journal of Chemical Physics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 124120_1_online.pdf
- Size:
- 5.52 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version