VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Error Control in Wireless ATM Network

dc.contributor.authorPu, Jianfengen
dc.contributor.committeechairLiu, Yiluen
dc.contributor.committeememberBroadwater, Robert P.en
dc.contributor.committeememberDonaghey, Robert J.en
dc.contributor.committeememberSun, Shu-Mingen
dc.contributor.committeememberVanLandingham, Hugh F.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:13:29Zen
dc.date.adate2000-07-07en
dc.date.available2014-03-14T20:13:29Zen
dc.date.issued2000-04-24en
dc.date.rdate2001-07-07en
dc.date.sdate2000-06-25en
dc.description.abstractAsynchronous Transfer Mode (ATM) protocol was designed to support real-time traffic steams over high quality links like fiber optics where the transmission error is extremely low. ATM performs poorly in an error-prone environment such as wireless communications. The purpose of this research is to investigate error control schemes in wireless ATM (W-ATM) to support real-time service, such that the physical layer error conditions are handled in lower layers under ATM transport layer. Automatic Repeat reQuest schemes (ARQ) and Forward Error Correction (FEC) have been widely used for reliable data transmissions. However, the current existing ARQ schemes can potentially introduce unbounded delay in high error rate environments like W-ATM network due to the lack of delay control mechanism. As a result, they are not appropriate for real-time data communications in which there are strict packet delay requirements. In this dissertation, we explored the issues related to W-ATM area. Adaptation of FEC, specifically Reed-Solomon code, to channel error conditions in W-ATM is investigated. The quality-of-service (QoS)-aware error control algorithm is originated and its performance is evaluated. The algorithm is further simplified to make it more suitable for practical applications. The requirements of ARQ applicability for real-time communication environment like W-ATM is extensively analyzed. An ARQ scheme, called D-bit protocol, is developed to satisfy the real-time requirements. The scheme supports reliable packet discarding while allowing retransmissions without compromising user-level QoS for real-time stream applications. Simulations show the effectiveness and liveness of the protocol.en
dc.description.degreePh. D.en
dc.identifier.otheretd-06252000-11030054en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-06252000-11030054/en
dc.identifier.urihttp://hdl.handle.net/10919/28114en
dc.publisherVirginia Techen
dc.relation.haspartPU_Final2.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectARQen
dc.subjectWirelessen
dc.subjectError Controlen
dc.subjectNeworken
dc.subjectATMen
dc.titleError Control in Wireless ATM Networken
dc.typeDissertationen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PU_Final2.pdf
Size:
943.03 KB
Format:
Adobe Portable Document Format