Young runoff fractions control streamwater age and solute concentration dynamics
dc.contributor.author | Benettin, Paolo | en |
dc.contributor.author | Bailey, Scott W. | en |
dc.contributor.author | Rinaldo, Andrea | en |
dc.contributor.author | Likens, Gene E. | en |
dc.contributor.author | McGuire, Kevin J. | en |
dc.contributor.author | Botter, Gianluca | en |
dc.contributor.department | Forest Resources and Environmental Conservation | en |
dc.contributor.department | Virginia Water Resources Research Center | en |
dc.date.accessioned | 2020-03-20T16:42:40Z | en |
dc.date.available | 2020-03-20T16:42:40Z | en |
dc.date.issued | 2017-07-31 | en |
dc.description.abstract | We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age fractions as an alternative to the mean age. The approach uses a travel time-based transport model to compute the fractions of streamflow that are younger than some thresholds (e.g., younger than a few weeks) and compares them to observed solute concentration patterns. The method is here validated with data from the Hubbard Brook Experimental Forest during spring 2008, where we show that the presence of water younger than roughly 2 weeks, tracked using a hydrologic transport model and deuterium measurements, mimics the variation in dissolved silicon concentrations. Our approach suggests that an age-discharge relationship can be coupled to classic concentration-discharge relationship, to identify the links between transport timescales and solute concentration. Our results highlight that the younger streamflow components can be crucial for determining water quality variations and for characterizing the dominant hydrologic transport dynamics. | en |
dc.description.admin | Public domain – authored by a U.S. government employee | en |
dc.description.notes | ENAC School, Ecole Polytechnique Federale de Lausanne; Andrew W. Mellon Foundation; NSF EAR, Grant/Award Number: 1014507; NSF LTER DEB, Grant/Award Number: 1114804 | en |
dc.description.sponsorship | Andrew W. Mellon Foundation; NSF EARNational Science Foundation (NSF) [1014507]; NSF LTER DEB [1114804]; ENAC School; Ecole Polytechnique Federale de Lausanne | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1002/hyp.11243 | en |
dc.identifier.eissn | 1099-1085 | en |
dc.identifier.issn | 0885-6087 | en |
dc.identifier.issue | 16 | en |
dc.identifier.orcid | McGuire, Kevin J. [0000-0001-5751-3956] | en |
dc.identifier.uri | http://hdl.handle.net/10919/97389 | en |
dc.identifier.volume | 31 | en |
dc.language.iso | en | en |
dc.rights | Creative Commons CC0 1.0 Universal Public Domain Dedication | en |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | en |
dc.subject | hysteresis | en |
dc.subject | solute concentration | en |
dc.subject | water age | en |
dc.subject | Water quality | en |
dc.subject | weathering | en |
dc.title | Young runoff fractions control streamwater age and solute concentration dynamics | en |
dc.title.serial | Hydrological Processes | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |
Files
Original bundle
1 - 1 of 1