Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

dc.contributor.authorBrown, Kenneth Alexanderen
dc.contributor.committeechairDevenport, William J.en
dc.contributor.committeememberBorgoltz, Aurelienen
dc.contributor.committeememberLowe, K. Todden
dc.contributor.committeememberBurdisso, Ricardo A.en
dc.contributor.committeememberPatil, Mayuresh J.en
dc.contributor.committeememberKapania, Rakesh K.en
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2016-11-02T08:01:04Zen
dc.date.available2016-11-02T08:01:04Zen
dc.date.issued2016-11-01en
dc.description.abstractThe aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m Low Speed Wind Tunnel at the Japanese Aerospace Exploration Agency, both of which employ Kevlar-wall test sections that can be replaced by solid-wall test sections. The behavior of Kevlar fabric, both aerodynamically and mechanically, is first investigated to provide a foundation for calculations involving wall interference correction and determination of the boundary conditions at the Kevlar wall. Building upon previous advancements in wall interference corrections for Kevlar-wall test sections, panel method codes are then employed to simulate the wind tunnel flow in the presence of porous, flexible Kevlar walls. An existing two-dimensional panel method is refined by examining the dependency of correction performance on key test section modeling assumptions, and a novel three-dimensional method is presented. Validation of the interference corrections, and thus validation of the Kevlar-wall aerodynamic performance, is accomplished by comparing aerodynamic coefficients between back-to-back tests of models carried out in the solid- and Kevlar-wall test sections. Analysis of the test results identified the existence of three new mechanisms by which Kevlar walls cause wall-interference. Additionally, novel measurements of the boundary conditions are made during the Kevlar-wall tests to characterize the flow at the boundary. Specifically, digital image correlation is used to measure the global deformation of the Kevlar walls under wind loading. Such data, when used in conjunction with knowledge of the pre-tension in the Kevlar wall and the material properties of the Kevlar, yields the pressure loading experienced by the wall. The pressure loading problem constitutes an inverse problem, and significant effort is made towards overcoming the ill-posedness of the problem to yield accurate wall pressure distributions, as well as lift measurements from the walls. Taken as a whole, this document offers a comprehensive view of the aerodynamic performance of Kevlar-wall test sections.en
dc.description.abstractgeneralTraditional wind tunnels, which measure the aerodynamic behavior of vehicles and components relevant to the aerospace industry, enclose some test object with solid walls and accelerate flow around the object. A new configuration has been developed which uses instead flexible, porous walls which are formed from tensioned Kevlar fabric. The original advantage of this configuration lies in its ability to produce high fidelity measurements of the acoustic signature of a model in a stream of air. This new configuration also has been emerging as tool for making the traditional measurements of aerodynamic behavior noted above. However, special considerations have to be made for the so-called Kevlar-wall test section because of the flexibility and porosity of the walls. This study focuses on understanding and exploiting Kevlar-wall wind tunnels with the hope to bring the aerodynamic measurement capabilities of Kevlar-wall test sections in-line with those of traditional solidwall test sections. The primary facility used for this purpose is the Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the Low Speed Wind Tunnel at the Japanese Aerospace Exploration Agency, both of which employ Kevlar-wall test sections that can be replaced by solid-wall test sections. The behavior of Kevlar fabric, both aerodynamically and mechanically, is first investigated to provide a foundation for calculations of the effect of the Kevlar’s porosity and flexibility on the flow around a model in the test section. Building upon previous advancements in this area, computer simulations are then employed to predict the wind tunnel flow in the presence of porous, flexible Kevlar walls. An existing two-dimensional simulation is refined by examining the dependency of the simulation on key modeling assumptions, and a novel three-dimensional method is presented. Validation of the simulations’ effectiveness in providing accurate corrections for the Kevlar porosity and flexibility is accomplished by comparing measurements between back-to-back tests of models carried out in the solid- and Kevlar-wall test sections. Additionally, novel measurements of the deflection and pressure distributions over the Kevlar walls are made during the Kevlar-wall tests. Specifically, a three-dimensional camera imaging system is used to measure the deformation of the Kevlar walls under wind loading. Such data, when used in conjunction with knowledge of the pre-tension in the Kevlar wall, yields the pressure loading experienced by the wall. Taken as a whole, this document offers a comprehensive view of the aerodynamic performance of Kevlar-wall test sections.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:8678en
dc.identifier.urihttp://hdl.handle.net/10919/73363en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectwind tunnelen
dc.subjectaerodynamicsen
dc.subjectaeroacousticsen
dc.subjectKevlar-wallen
dc.subjectwall interferenceen
dc.subjectpanel methoden
dc.subjectporosityen
dc.subjectinverse problemen
dc.subjectdigital image correlationen
dc.subjectmembrane mechanicsen
dc.titleUnderstanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurementen
dc.typeDissertationen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brown_KA_D_2016.pdf
Size:
56.82 MB
Format:
Adobe Portable Document Format