Three Essays on Analysis of U.S. Infant Mortality Using Systems and Data Science Approaches
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
High infant mortality (IM) rates in the U.S. have been a major public health concern for decades. Many studies have focused on understanding causes, risk factors, and interventions that can reduce IM. However, death of an infant is the result of the interplay between many risk factors, which in some cases can be traced to the infancy of their parents. Consequently, these complex interactions challenge the effectiveness of many interventions. The long-term goal of this study is to advance the common understanding of effective interventions for improving health outcomes and, in particular, infant mortality. To achieve this goal, I implemented systems and data science methods in three essays to contribute to the understanding of IM causes and risk factors.
In the first study, the goal was to identify patterns in the leading causes of infant mortality across states that successfully reduced their IM rates. I explore the trends at the state-level between 2000 and 2015 to identify patterns in the leading causes of IM. This study shows that the main drivers of IM rate reduction is the preterm-related mortality rate. The second study builds on these findings and investigates the risk factors of preterm birth (PTB) in the largest obstetric population that has ever been studied in this field. By applying the latest statistical and machine learning techniques, I study the PTB risk factors that are both generalizable and identifiable during the early stages of pregnancy. A major finding of this study is that socioeconomic factors such as parent education are more important than generally known factors such as race in the prediction of PTB. This finding is significant evidence for theories like Lifecourse, which postulate that the main determinants of a health trajectory are the social scaffolding that addresses the upstream roots of health. These results point to the need for more comprehensive approaches that change the focus from medical interventions during pregnancy to the time where mothers become vulnerable to the risk factors of PTB. Therefore, in the third study, I take an aggregate approach to study the dynamics of population health that results in undesirable outcomes in major indicators like infant mortality. Based on these new explanations, I offer a systematic approach that can help in addressing adverse birth outcomes—including high infant mortality and preterm birth rates—which is the central contribution of this dissertation.
In conclusion, this dissertation contributes to a better understanding of the complexities in infant mortality and health-related policies. This work contributes to the body of literature both in terms of the application of statistical and machine learning techniques, as well as in advancing health-related theories.