VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Robust Dynamic Mode Decomposition

dc.contributor.authorHossein Abolmasoumi, Amiren
dc.contributor.authorNetto, Marcosen
dc.contributor.authorMili, Lamine M.en
dc.date.accessioned2024-01-23T18:25:46Zen
dc.date.available2024-01-23T18:25:46Zen
dc.date.issued2022-06-16en
dc.description.abstractThis paper develops a robust dynamic mode decomposition (RDMD) method endowed with statistical and numerical robustness. Statistical robustness ensures estimation efficiency at the Gaussian and non-Gaussian probability distributions, including heavy-tailed distributions. The proposed RDMD is statistically robust because the outliers in the data set are flagged via projection statistics and suppressed using a Schweppe-type Huber generalized maximum-likelihood estimator that minimizes a convex Huber cost function. The latter is solved using the iteratively reweighted least-squares algorithm that is known to exhibit an excellent convergence property and numerical stability than the Newton algorithms. Several numerical simulations using canonical models of dynamical systems demonstrate the excellent performance of the proposed RDMD method. The results reveal that it outperforms several other methods proposed in the literature.en
dc.description.versionPublished versionen
dc.format.extentPages 65473-65484en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2022.3183760en
dc.identifier.eissn2169-3536en
dc.identifier.issn2169-3536en
dc.identifier.orcidMili, Lamine [0000-0001-6134-3945]en
dc.identifier.urihttps://hdl.handle.net/10919/117621en
dc.identifier.volume10en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleRobust Dynamic Mode Decompositionen
dc.title.serialIEEE Accessen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Amir-Mili_Robust_Dynamic_Mode_Decomposition.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: