Advancing Microbial Desalination Cell towards Practical Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Conventional desalination plant, municipal water supply and wastewater treatment system are among the most electricity-intensive facilities. Microbial Desalination Cell (MDC) has emerged as a promising technique to capture the chemical energy stored in wastewater directly for desalination, which has the potential to solve the high energy consumption issue in desalination industry as well as wastewater treatment system. The MDC is composed of two critical components, the electrodes (anode and cathode), and the ion-exchange membranes separating the two electrodes which drive anions migrate towards the anode, and cations migrate towards the cathode. The multiple components allow us to manipulate the configuration to achieve most efficient desalination performance. By coupling with Donnan Dialysis or Microbial Fuel Cell, the device can effectively achieve boron removal which has been a critical issue in desalination plants. The uncertainty of water quality of the final desalinated water caused by contaminant back diffusion from the wastewater side can be theoretically explained by two mechanisms, Donnan exchange and molecule transport which are controlled by bioelectricity and concentration gradient. Scaling and fouling is also a factor needs to be taken into consideration when operating the MDC system in real world. With mathematical modeling, we can provide insight to bridge the gap between lab-scale experiments and industrial applications. This study is expected to provide guidance to enhance the efficiency as well as the reliability and controllability of MDC for desalination.