Abiotic Factors Underlying Stress Hormone Level Variation Among Larval Amphibians

Files

TR Number

Date

2009-03-31

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Anthropogenic disturbances can alter the abiotic composition of freshwater systems. These compositional changes can act as physiological stressors towards system inhabitants. However, little is known about how these altered abiotic factors influence stress hormones (corticosterone) in larval amphibians. Throughout the following chapters, I examined the effects of several abiotic factors on baseline and stress-induced corticosterone levels in the larvae of four amphibian species: Jefferson salamander (Ambystoma jeffersonianum), spotted salamander (A. maculatum), wood frog (Rana sylvatica), and grey treefrog (Hyla versicolor). Chapter II examined corticosterone level differences throughout development in A. jeffersonianum and R. sylvatica larvae under field, mesocosm, and laboratory venues. Baseline corticosterone levels in R. sylvatica increased near metamorphic climax in all venues, but not in A. jeffersonianum. Rather, baseline corticosterone levels differed with respect to venue throughout development in A. jeffersonianum. Chapter III examined corticosterone level differences among free-living A. jeffersonianum populations and possible abiotic factors underlying these hormone differences. Corticosterone levels significantly differed across populations. Increased baseline corticosterone levels significantly correlated to low pH. There was also a trend for increased baseline corticosterone levels to be positively correlated with chloride levels and negatively correlated with conductivity. Chapter IV examined the effects of laboratory manipulated pH on corticosterone levels in A. jeffersonianum, A. maculatum, R. sylvatica, and H. versicolor. There was a significant correlation between increased baseline corticosterone levels to low pH in all four species. Prey consumption (in both Ambystoma species) and survival (in A. jeffersonianum, A. maculatum, and R. sylvatica) were also negatively correlated to low pH. Chapter V examined the effects of increased conductivity on corticosterone levels in A. jeffersonianum, R. sylvatica, and H. versicolor. Increased conductivity exposure significantly correlated to increased baseline corticosterone levels in A. jeffersonianum and R. sylvatica. Prey consumption in A. jeffersonianum was also negatively correlated to increased conductivity. My dissertation shows that abiotic factors, such as pH and conductivity, can influence corticosterone levels in larval amphibians. These results suggest that corticosterone levels in larval amphibians may be a suitable biomarker reflective of altered freshwater habitat quality. However, my results also suggest that one should use a high degree of caution when using corticosterone levels in larval amphibians as a means to infer the health status of a population.

Description

Keywords

stress, corticosterone, amphibian, Ambystoma, Rana, Hyla, anthropogenic disturbance, pH, conductivity, development, biomarker

Citation