VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Isometric spiracular scaling in scarab beetles—implications for diffusive and advective oxygen transport

dc.contributor.authorWagner, Julian M.en
dc.contributor.authorKlok, C. Jacoen
dc.contributor.authorDuell, Meghan E.en
dc.contributor.authorSocha, John J.en
dc.contributor.authorCao, Guohuaen
dc.contributor.authorGong, Haoen
dc.contributor.authorHarrison, Jon F.en
dc.date.accessioned2023-02-24T14:00:43Zen
dc.date.available2023-02-24T14:00:43Zen
dc.date.issued2022-09-01en
dc.date.updated2023-02-23T22:41:08Zen
dc.description.abstractThe scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here, we provide the first assessment of the scaling of the spiracles in insects using 10 scarab beetle species differing 180× in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffu-sive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher PO2 gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffu-sive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.7554/eLife.82129en
dc.identifier.eissn2050-084Xen
dc.identifier.issn2050-084Xen
dc.identifier.orcidSocha, John [0000-0002-4465-1097]en
dc.identifier.other82129 (PII)en
dc.identifier.pmid36098509en
dc.identifier.urihttp://hdl.handle.net/10919/113930en
dc.identifier.volume11en
dc.language.isoenen
dc.publishereLife Sciencesen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/36098509en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectColeopteraen
dc.subjectbeetlesen
dc.subjectbody sizeen
dc.subjectevolutionary biologyen
dc.subjectmorphologyen
dc.subjectscalingen
dc.subjectspiracleen
dc.subjectLungen
dc.subject.meshAnimalsen
dc.subject.meshOxygenen
dc.subject.meshRespiratory Transporten
dc.subject.meshRespirationen
dc.subject.meshColeopteraen
dc.subject.meshInsectaen
dc.titleIsometric spiracular scaling in scarab beetles—implications for diffusive and advective oxygen transporten
dc.title.serialeLifeen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
dcterms.dateAccepted2022-08-16en
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Biomedical Engineering and Mechanicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Isometric_spiracular.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Published version