Applications of Sensor Fusion to Classification, Localization and Mapping
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Sensor Fusion is an essential framework in many Engineering fields. It is a relatively new paradigm for integrating data from multiple sources to synthesize new information that in general would not have been feasible from the individual parts. Within the wireless communications fields, many emerging technologies such as Wireless Sensor Networks (WSN), the Internet of Things (IoT), and spectrum sharing schemes, depend on large numbers of distributed nodes working collaboratively and sharing information. In addition, there is a huge proliferation of smartphones in the world with a growing set of cheap powerful embedded sensors. Smartphone sensors can collectively monitor a diverse range of human activities and the surrounding environment far beyond the scale of what was possible before. Wireless communications open up great opportunities for the application of sensor fusion techniques at multiple levels.
In this dissertation, we identify two key problems in wireless communications that can greatly benefit from sensor fusion algorithms: Automatic Modulation Classification (AMC) and indoor localization and mapping based on smartphone sensors. Automatic Modulation Classification is a key technology in Cognitive Radio (CR) networks, spectrum sharing, and wireless military applications. Although extensively researched, performance of signal classification at a single node is largely bounded by channel conditions which can easily be unreliable. Applying sensor fusion techniques to the signal classification problem within a network of distributed nodes is presented as a means to overcome the detrimental channel effects faced by single nodes and provide more reliable classification performance.
Indoor localization and mapping has gained increasing interest in recent years. Currently-deployed positioning techniques, such as the widely successful Global Positioning System (GPS), are optimized for outdoor operation. Providing indoor location estimates with high accuracy up to the room or suite level is an ongoing challenge. Recently, smartphone sensors, specially accelerometers and gyroscopes, provided attractive solutions to the indoor localization problem through Pedestrian Dead-Reckoning (PDR) frameworks, although still suffering from several challenges. Sensor fusion algorithms can be applied to provide new and efficient solutions to the indoor localization problem at two different levels: fusion of measurements from different sensors in a smartphone, and fusion of measurements from several smartphones within a collaborative framework.