Investigation of real-time coupled cluster methods for the efficient calculation of optical molecular properties in the time domain
dc.contributor.author | Wang, Zhe | en |
dc.contributor.committeechair | Crawford, Daniel | en |
dc.contributor.committeemember | Troya, Diego | en |
dc.contributor.committeemember | Valeyev, Eduard Faritovich | en |
dc.contributor.committeemember | Mayhall, Nicholas | en |
dc.contributor.department | Chemistry | en |
dc.date.accessioned | 2023-10-11T08:00:15Z | en |
dc.date.available | 2023-10-11T08:00:15Z | en |
dc.date.issued | 2023-10-10 | en |
dc.description.abstract | Optical and spectroscopic molecular properties are key to characterizing the behavior of molecules interacting with an applied electromagnetic field of light. Response theory has been used for a long time to calculate such properties in the frequency domain. Real-time (RT) methods solve for the frequency-dependent properties in the time domain by explicitly propagating the time-dependent wave function. Various quantum chemical methods can be incorporated with the RT formalism, including Hartree-Fock, density functional theory, configurational interaction, coupled cluster, etc. Among these, coupled cluster (CC) methods provide high accuracy for systems with strong electron correlation, making RT-CC implementations intriguing. All applications of CC methods face a substantial challenge due to their high-order polynomial scaling. For RT-CC methods, two aspects may be explored to improve the efficiency, the numerical techniques regarding the RT propagation and the reduced-scaling methods regarding CC itself. In this work, we start with the exploration of the hardware used for the calculations and the numerical integration methods for propagating the wave function parameters. Firstly, a GPU-enabled Python implementation has been developed by conducting the tensor contractions on GPUs utilizing PyTorch, a machine learning package, that has similar syntax as NumPy for tensor operations. A speedup of a factor of 14 is obtained for the RT-CCSD/cc-pVDZ absorption spectrum calculation of the water tetramer. Furthermore, to optimize the performance on GPUs, single-precision arithmetic is added to the implementation to achieve an additional speedup of a factor of two. Lastly, a group of integrators for solving differential equations are introduced to the RT framework, including regular explicit integrators, adaptive integrators, and a mixed-step-size approach customized for strong-field simulations. The optimal choice of the integrator depends on the requiring accuracy, stability and efficiency. In addition to being highly accurate, CC methods are also systematically improvable and provide a hierarchy of accuracy. Based upon the RT-CCSD implementation, the coupled cluster singles, doubles and approximate triples (CC3) method, favorable for calculating frequency-dependent properties, is tailored to the RT framework for high excitation and approximate orbital relaxation. The calculation is tested on both CPUs and GPUs, with a significant speedup gained from GPUs for the water cluster test cases. To further expand the range of applications of our RT-CC implementation, dynamic polarizabilities, first hyperpolarizabilities, and the G' tensor are calculated from induced electric and magnetic dipole moments using finite-difference methods. A discussion has also been conducted to compare RT-CC3 with RT-CCSD, and time-dependent nonorthogonal orbital-optimized coupled cluster doubles (TDNOCCD) method. Additionally, electron dynamics, including the Rabi oscillation and exited state to excited state transitions, have also been explored utilizing the well-developed RT-CC framework. | en |
dc.description.abstractgeneral | Theoretical studies aim to match experiments, but more importantly, provide insights to interpret and predict experimental data. Calculating optical properties related to light-matter interactions is one of the most crucial tasks for characterizing molecular properties. In experiments, electromagnetic radiation in the form of light is applied to the system. The absorption or emission of light can be measured to identify, for example, the electronic structure of the molecule. In theoretical simulations, this applied radiation is represented by a perturbation operator that is added to the Hamiltonian in the Schrödinger equation. Quantum chemists are dedicated to developing methods that provide a better description of the spectroscopy. In the current work, the frequency, shape and the intensity of the radiation can all be finely-tuned, similar to experimental setups. The framework for extracting optical properties from time-dependent trajectories of induced dipole moments is established for accurate and efficient simulations. To improve efficiency and make the method feasible for real-world applications, a strong understanding of light-matter interactions on a quantum level and proper utilization of computational resources are both necessary. Improvements achieved and presented in this dissertation demonstrate a powerful tool for a better understanding of the nature of the interaction between the system and the electromagnetic radiation. | en |
dc.description.degree | Doctor of Philosophy | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:38583 | en |
dc.identifier.uri | http://hdl.handle.net/10919/116441 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Electronic structure theory | en |
dc.subject | coupled cluster | en |
dc.subject | numerical integration | en |
dc.subject | GPUs | en |
dc.subject | optical properties | en |
dc.title | Investigation of real-time coupled cluster methods for the efficient calculation of optical molecular properties in the time domain | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Chemistry | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |