An Analytical Study on the Behavior of Reinforced Concrete Interior Beam-Column Joints

TR Number

Date

2019-08-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Reinforced concrete (RC) moment frame structures make up a notable proportion of buildings in earthquake-prone regions in the United States and throughout the world. The beam-column (BC) joints are the most crucial regions in a RC moment frame structure as any deterioration of strength and/or stiffness in these areas can lead to global collapse of the structure. Thus, accurate simulations of the joint behavior are important for assessment of the local and global performance of both one-way and two-way interior BC joints. Such simulations can be used to study the flexural-shear-bond interaction, the failure modes, and sensitivity of various parameters of structural elements. Most of the existing analytical approaches for interior BC joints have either failed to account for the cyclic bond-slip behavior and the triaxial compressive state of confined concrete in the joint correctly or require so many calibrations on parameters as to render them impractical. The core motivation for this study is the need to develop robust models to test current design recommendations for 3D beam-column-slab subassemblies subjected to large drifts.

The present study aims to first evaluate the flexural-shear-bond interactive behavior of two-way beam-column-slab interior connections by both finite element and nonlinear truss methodologies. The local performance such as bond-slip and strain history of reinforcing steel are compared with the experimental results for the first time. The reliability of applied finite element approach is evaluated against a series of one-way interior BC joints and a two-way interior beam-column-slab joint. The accuracy and efficiency of the nonlinear truss methodology is also evaluated by the same series of joints. Results show good agreement for finite element method against both global and local response, including hysteretic curve, local bond-slip development and beam longitudinal bar stress/strain distributions. The nonlinear truss model is also capable in obtaining satisfactory global response, especially in capturing large shear cracks.

A parametric study is exhibited for a prototype two-way interior beam-column-slab joint described in an example to ACI 352R-02, to quantify several non-consensus topics in the design of interior BC connections, such as the joint shear force subjected to bidirectional cyclic loading, the development of bond-slip behavior, and the failure modes of two-way interior joints with slab. Results from connections with different levels of joint shear force subjected to unidirectional loading show that meeting the requirements from ACI 352 is essential to maintain the force transfer mechanism and the integrity of the joint. The connections achieved satisfactory performance under unidirectional loading, while the bidirectional monotonic loading decreases the joint shear force calculated by ACI 352 by 10%~26% based on current results. Poorer performance is obtained for wider beams and connections fail by shear in the joint rather than bond-slip behavior when subjected to bidirectional cyclic loading. In general, the study indicates that the ACI352-02 design methodology generally results in satisfactory performance when applied to 2D joints (planar) under monotonic and cyclic loads. Less satisfactory performance was found for cases of 3D joints with slabs.

Description

Keywords

Interior Beam-Column Joint, Reinforced Concrete Structures, Nonlinear Finite Element Analysis, Bond-slip Behavior, Nonlinear Truss Model, ACI352

Citation