Scalable and cost-effective NGS genotyping in the cloud

dc.contributor.authorSouilmi, Yassineen
dc.contributor.authorLancaster, Alex K.en
dc.contributor.authorJung, Jae-Yoonen
dc.contributor.authorRizzo, Ettoreen
dc.contributor.authorHawkins, Jared B.en
dc.contributor.authorPowles, Ryanen
dc.contributor.authorAmzazi, Saaïden
dc.contributor.authorGhazal, Hassanen
dc.contributor.authorTonellato, Peter J.en
dc.contributor.authorWall, Dennis P.en
dc.date.accessioned2015-10-15T16:02:36Zen
dc.date.available2015-10-15T16:02:36Zen
dc.date.issued2015-10-15en
dc.date.updated2015-10-15T16:02:37Zen
dc.description.abstractBackground While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10’s of dollars. Results We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets. Conclusions Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Medical Genomics. 2015 Oct 15;8(1):64en
dc.identifier.doihttps://doi.org/10.1186/s12920-015-0134-9en
dc.identifier.urihttp://hdl.handle.net/10919/56950en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderSouilmi et al.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleScalable and cost-effective NGS genotyping in the clouden
dc.title.serialBMC Medical Genomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12920_2015_Article_134.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: