Thermodynamically consistent phase-field modelling of contact angle hysteresis

dc.contributor.authorYue, Pengtaoen
dc.date.accessioned2022-12-21T19:51:13Zen
dc.date.available2022-12-21T19:51:13Zen
dc.date.issued2020-09-25en
dc.date.updated2022-12-21T16:07:17Zen
dc.description.abstractIn the phase-field description of moving contact line problems, the two-phase system can be described by free energies, and the constitutive relations can be derived based on the assumption of energy dissipation. In this work we propose a novel boundary condition for contact angle hysteresis by exploring wall energy relaxation, which allows the system to be in non-equilibrium at the contact line. Our method captures pinning, advancing and receding automatically without the explicit knowledge of contact line velocity and contact angle. The microscopic dynamic contact angle is computed as part of the solution instead of being imposed. Furthermore, the formulation satisfies a dissipative energy law, where the dissipation terms all have their physical origin. Based on the energy law, we develop an implicit finite element method that is second order in time. The numerical scheme is proven to be unconditionally energy stable for matched density and zero contact angle hysteresis, and is numerically verified to be energy dissipative for a broader range of parameters. We benchmark our method by computing pinned drops and moving interfaces in the plane Poiseuille flow. When the contact line moves, its dynamics agrees with the Cox theory. In the test case of oscillating drops, the contact line transitions smoothly between pinning, advancing and receding. Our method can be directly applied to three-dimensional problems as demonstrated by the test case of sliding drops on an inclined wall.en
dc.description.versionAccepted versionen
dc.format.extent41 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifierPII S0022112020004656 (Article number)en
dc.identifier.doihttps://doi.org/10.1017/jfm.2020.465en
dc.identifier.eissn1469-7645en
dc.identifier.issn0022-1120en
dc.identifier.orcidYue, Pengtao [0000-0001-8343-846X]en
dc.identifier.urihttp://hdl.handle.net/10919/112973en
dc.identifier.volume899en
dc.language.isoenen
dc.publisherCambridge University Pressen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000550232700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectdropsen
dc.subjectcontact linesen
dc.subjectcomputational methodsen
dc.subjectVARIABLE-DENSITYen
dc.subjectNUMERICAL APPROXIMATIONSen
dc.subjectSOLID-SURFACESen
dc.subjectLINE DYNAMICSen
dc.subject2-PHASE FLOWSen
dc.subjectINTERFACEen
dc.subjectCAHNen
dc.subjectENERGYen
dc.subjectSIMULATIONen
dc.subject7 Affordable and Clean Energyen
dc.titleThermodynamically consistent phase-field modelling of contact angle hysteresisen
dc.title.serialJournal of Fluid Mechanicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Mathematicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20_hysteresis_jfm_Accepted.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:
Accepted version