VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Magnetic Field Sensing via Acoustic Sensing Fiber with Metglas® 2605SC Cladding Wires

Abstract

Magnetic field sensing has the potential to become necessary as a critical tool for long-term subsurface geophysical monitoring. The success of distributed fiber optic sensing for geophysical characterization provides a template for the development of next generation downhole magnetic sensors. In this study, Sentek Instrument’s picoDAS is coupled with a multi-material single mode optical fiber with Metglas® 2605SC cladding wire inclusions for magnetic field detection. The response of acoustic sensing fibers with one and two Metglas® 2605SC cladding wires was evaluated upon exposure to lateral AC magnetic fields. An improved response was demonstrated for a sensing fiber with in-cladding wire following thermal magnetic annealing (~400 °C) under a constant static transverse magnetic field (~200 μT). A minimal detectable magnetic field of ~500 nT was confirmed for a sensing fiber with two 10 μm cladding wires. The successful demonstration of a magnetic field sensing fiber with Metglas® cladding wires fabricated via traditional draw processes sets the stage for distributed measurements and joint inversion as a compliment to distributed fiber optic acoustic sensors.

Description

Keywords

optic sensors, magnetostriction, magnetism, magnetic field sensors, distributed acoustic sensors

Citation

Dejneka, Z.; Homa, D.; Buontempo, J.; Crawford, G.; Martin, E.; Theis, L.; Wang, A.; Pickrell, G. Magnetic Field Sensing via Acoustic Sensing Fiber with Metglas® 2605SC Cladding Wires. Photonics 2024, 11, 348.