Motivic Chern Classes of Schubert Cells, Hecke Algebras, and Applications to Casselman's Problem

dc.contributor.authorAluffi, Paoloen
dc.contributor.authorMihalcea, Leonardo C.en
dc.contributor.authorSchuermann, Joergen
dc.contributor.authorSu, Changjianen
dc.date.accessioned2025-02-04T13:27:50Zen
dc.date.available2025-02-04T13:27:50Zen
dc.date.issued2024-04-02en
dc.description.abstractMotivic Chern classes are elements in the K-theory of an algebraic variety X, depending on an extra parameter y. They are determined by functoriality and a normalization property for smooth X. In this paper we calculate the motivic Chern classes of Schubert cells in the (equivariant) K-theory of flag manifolds G=B. We show that the motivic class of a Schubert cell is determined recursively by the Demazure-Lusztig operators in the Hecke algebra of the Weyl group of G, starting from the class of a point. The resulting classes are conjectured to satisfy a positivity property. We use the recursions to give a new proof that they are equivalent to certain K-theoretic stable envelopes recently defined by Okounkov and collaborators, thus recovering results of Fehér, Rimányi and Weber. The Hecke algebra action on the K-theory of the Langlands dual flag manifold matches the Hecke action on the Iwahori invariants of the principal series representation associated to an unramified character for a group over a nonarchimedean local field. This gives a correspondence identifying the duals of the motivic Chern classes to the standard basis in the Iwahori invariants, and the fixed point basis to Casselman’s basis. We apply this correspondence to prove two conjectures of Bump, Nakasuji and Naruse concerning factorizations and holomorphy properties of the coefficients in the transition matrix between the standard and the Casselman’s basis.en
dc.description.versionSubmitted versionen
dc.format.extentPages 87-141en
dc.format.extent55 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.24033/asens.2571en
dc.identifier.eissn1873-2151en
dc.identifier.issn0012-9593en
dc.identifier.issue1en
dc.identifier.orcidMihalcea, Constantin [0000-0002-8437-9163]en
dc.identifier.urihttps://hdl.handle.net/10919/124476en
dc.identifier.volume57en
dc.language.isoenen
dc.publisherSociété Mathematique de Franceen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleMotivic Chern Classes of Schubert Cells, Hecke Algebras, and Applications to Casselman's Problemen
dc.title.serialAnnales Scientifiques De L'Ecole Normale Superieureen
dc.typeArticleen
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Scienceen
pubs.organisational-groupVirginia Tech/Science/Mathematicsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
submitted-AENS.pdf
Size:
634.36 KB
Format:
Adobe Portable Document Format
Description:
Submitted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: