Investigation of Non-Traditional Applications of the Physical Level in Reconfigurable Computing

TR Number

Date

2016-04-29

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Multiple research projects are proposed that utilize low-level knowledge of Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) design processes to enable additional research avenues. In order to accomplish these projects, Tools for Open Reconfigurable Computing (TORC) is utilized to provide a robust environment for circuit analysis and modifications. These projects rely on looking at the low-level constructs of the internals of these microchips. Through this knowledge, techniques for performing supply chain evaluations are proposed utilizing a non-binary comparison of multiple characteristic vectors between different FPGA manufacturing lots, and FPGAs that have been exposed to different environmental conditions. Second, techniques are proposed that look at design recovery by performing fuzzy segmentation and fuzzy matching algorithms to a problem area that has traditionally focused on exact graph sub-isomorphism solutions. Through these projects, additional research vectors are opened to protect and analyze the engineering efforts that are exerted in the design of FPGA and ASIC projects.

Description

Keywords

Field programmable gate arrays, Supply Chain Risk Management, Design Recovery, Ring Oscillator

Citation