Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies
dc.contributor.author | Xiao, Ming | en |
dc.contributor.author | Hu, Ziying | en |
dc.contributor.author | Gartner, Thomas E., III | en |
dc.contributor.author | Yang, Xiaozhou | en |
dc.contributor.author | Li, Weiyao | en |
dc.contributor.author | Jayaraman, Arthi | en |
dc.contributor.author | Gianneschi, Nathan C. | en |
dc.contributor.author | Shawkey, Matthew D. | en |
dc.contributor.author | Dhinojwala, Ali | en |
dc.contributor.department | Chemistry | en |
dc.date.accessioned | 2019-11-14T16:04:22Z | en |
dc.date.available | 2019-11-14T16:04:22Z | en |
dc.date.issued | 2019-09 | en |
dc.description.abstract | Surface segregation in binary colloidal mixtures offers a simple way to control both surface and bulk properties without affecting their bulk composition. Here, we combine experiments and coarse-grained molecular dynamics (CG-MD) simulations to delineate the effects of particle chemistry and size on surface segregation in photonic colloidal assemblies from binary mixtures of melanin and silica particles of size ratio (Dlarge/Dsmall) ranging from 1.0 to similar to 2.2. We find that melanin and/or smaller particles segregate at the surface of micrometer-sized colloidal assemblies (supraballs) prepared by an emulsion process. Conversely, no such surface segregation occurs in films prepared by evaporative assembly. CG-MD simulations explain the experimental observations by showing that particles with the larger contact angle (melanin) are enriched at the supraball surface regardless of the relative strength of particle-interface interactions, a result with implications for the broad understanding and design of colloidal particle assemblies. | en |
dc.description.notes | We acknowledge support from the Air Force Office of Scientific Research (MURI-FA 9550-18-1-0142, FA9550-18-1-0477, and FA9550-13-1-0222), the National Science Foundation (EAR-1251895, DMR-1105370, and DMR-1609543), and Research Foundation-Flanders (FWO G007117 N). This work made use of the BioCryo facility of Northwestern University's NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. This research was supported in part through the use of computational resources from the University of Delaware (Farber cluster) and the Extreme Science and Engineering Discovery Environment (XSEDE) Stampede cluster (allocation MCB100140), which is supported by NSF grant ACI-1548562. | en |
dc.description.sponsorship | Air Force Office of Scientific ResearchUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [MURI-FA 9550-18-1-0142, FA9550-18-1-0477, FA9550-13-1-0222]; National Science FoundationNational Science Foundation (NSF) [EAR-1251895, DMR-1105370, DMR-1609543]; Research Foundation-FlandersFWO [FWO G007117 N]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF ECCS-1542205]; MRSEC program at the Materials Research Center [NSF DMR-1720139]; International Institute for Nanotechnology (IIN); State of Illinois, through the IIN; NSFNational Science Foundation (NSF) [ACI-1548562] | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1126/sciadv.aax1254 | en |
dc.identifier.eissn | 2375-2548 | en |
dc.identifier.issue | 9 | en |
dc.identifier.other | eaax1254 | en |
dc.identifier.pmid | 31555734 | en |
dc.identifier.uri | http://hdl.handle.net/10919/95550 | en |
dc.identifier.volume | 5 | en |
dc.language.iso | en | en |
dc.publisher | AAAS | en |
dc.rights | Creative Commons Attribution-NonCommercial 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | en |
dc.title | Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies | en |
dc.title.serial | Science Advances | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | StillImage | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eaax1254.full.pdf
- Size:
- 3.76 MB
- Format:
- Adobe Portable Document Format
- Description: