Generalized hill climbing algorithms for discrete optimization problems
dc.contributor.author | Johnson, Alan W. | en |
dc.contributor.committeechair | Jacobson, Sheldon H. | en |
dc.contributor.committeemember | Allison, Donald C. S. | en |
dc.contributor.committeemember | Blanchard, Benjamin S. Jr. | en |
dc.contributor.committeemember | Sarin, Subhash C. | en |
dc.contributor.committeemember | Sherali, Hanif D. | en |
dc.contributor.department | Industrial and Systems Engineering | en |
dc.date.accessioned | 2014-03-14T21:12:24Z | en |
dc.date.adate | 2008-06-06 | en |
dc.date.available | 2014-03-14T21:12:24Z | en |
dc.date.issued | 1996-10-01 | en |
dc.date.rdate | 2008-06-06 | en |
dc.date.sdate | 2008-06-06 | en |
dc.description.abstract | Generalized hill climbing (GHC) algorithms are introduced, as a tool to address difficult discrete optimization problems. Particular formulations of GHC algorithms include simulated annealing (SA), local search, and threshold accepting (T A), among. others. A proof of convergence of GHC algorithms is presented, that relaxes the sufficient conditions for the most general proof of convergence for stochastic search algorithms in the literature (Anily and Federgruen [1987]). Proofs of convergence for SA are based on the concept that deteriorating (hill climbing) transitions between neighboring solutions are accepted by comparing a deterministic function of both the solution change cost and a temperature parameter to a uniform (0,1) random variable. GHC algorithms represent a more general model, whereby deteriorating moves are accepted according to a general random variable. Computational results are reported that illustrate relationships that exist between the GHC algorithm's finite-time performance on three problems, and the general random variable formulations used. The dissertation concludes with suggestions for further research. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | ix, 128 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-06062008-152638 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-06062008-152638/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/38064 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1996.J646.pdf | en |
dc.relation.isformatof | OCLC# 36210610 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | simulated annealing | en |
dc.subject | hill climbing algorithms | en |
dc.subject | discrete optimization | en |
dc.subject | combinatorial optimization | en |
dc.subject | convergence | en |
dc.subject | heuristics | en |
dc.subject.lcc | LD5655.V856 1996.J646 | en |
dc.title | Generalized hill climbing algorithms for discrete optimization problems | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Industrial and Systems Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1996.J646.pdf
- Size:
- 5.36 MB
- Format:
- Adobe Portable Document Format
- Description: