High Order Implicit-Explicit General Linear Methods with Optimized Stability Regions

dc.contributor.authorZhang, H.en
dc.contributor.authorSandu, Adrianen
dc.contributor.authorBlaise, S.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:42:14Zen
dc.date.available2017-03-06T18:42:14Zen
dc.date.issued2016-01-01en
dc.description.abstractIn the numerical solution of partial differential equations using a method-of-lines approach, the availability of high order spatial discretization schemes motivates the development of sophisticated high order time integration methods. For multiphysics problems with both stiff and non-stiff terms implicit-explicit (IMEX) time stepping methods attempt to combine the lower cost advantage of explicit schemes with the favorable stability properties of implicit schemes. Existing high order IMEX Runge Kutta or linear multistep methods, however, suffer from accuracy or stability reduction. This work shows that IMEX general linear methods (GLMs) are competitive alternatives to classic IMEX schemes for large problems arising in practice. High order IMEX-GLMs are constructed in the framework developed by the authors [34]. The stability regions of the new schemes are optimized numerically. The resulting IMEX-GLMs have similar stability properties as IMEX RungeKutta methods, but they do not suffer from order reduction, and are superior in terms of accuracy and efficiency. Numerical experiments with two and three dimensional test problems illustrate the potential of the new schemes to speed up complex applications.en
dc.description.versionPublished versionen
dc.format.extentA1430 - A1453 (24) page(s)en
dc.identifier.doihttps://doi.org/10.1137/15M1018897en
dc.identifier.issn1064-8275en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/75283en
dc.identifier.volume38en
dc.language.isoenen
dc.publisherSiam Publicationsen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000385282800008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectMathematics, Applieden
dc.subjectMathematicsen
dc.subjectimplicit-explicit integrationen
dc.subjectgeneral linear methodsen
dc.subjectDIMSIMen
dc.subjectORDINARY DIFFERENTIAL-EQUATIONSen
dc.subjectRUNGE-KUTTA SCHEMESen
dc.subjectDISCONTINUOUS GALERKIN METHODSen
dc.subjectNAVIER-STOKES EQUATIONSen
dc.subjectSHALLOW-WATERen
dc.subjectHYPERBOLIC SYSTEMSen
dc.subjectMULTISTEP METHODSen
dc.subjectMODELen
dc.subjectCONSTRUCTIONen
dc.subjectFLOWSen
dc.titleHigh Order Implicit-Explicit General Linear Methods with Optimized Stability Regionsen
dc.title.serialSiam Journal On Scientific Computingen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1407.2337v1.pdf
Size:
525.89 KB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: